Lobe based image reconstruction in Electrical Impedance Tomography

被引:7
|
作者
Schullcke, Benjamin [1 ]
Gong, Bo [2 ]
Krueger-Ziolek, Sabine [2 ]
Tawhai, Merryn [3 ]
Adler, Andy [4 ]
Mueller-Lisse, Ullrich [5 ]
Moeller, Knut [1 ]
机构
[1] Furtwangen Univ, Inst Tech Med, D-78120 Villingen Schwenningen, Germany
[2] Univ Munich, Dept Radiol, D-80336 Munich, Germany
[3] Univ Auckland, Auckland Bioengn Inst, Auckland 1010, New Zealand
[4] Carlton Univ, Syst & Comp Engn, Ottawa, ON K1S 5B6, Canada
[5] Univ Munich, Dept Radiol, D-80336 Munich, Germany
关键词
electrical impedance tomography; lobe ventilation; patient-specific functional imaging; LUNG EIT; REGIONAL VENTILATION; MOVEMENT; IMPACT;
D O I
10.1002/mp.12038
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Purpose: Electrical Impedance Tomography (EIT) is an imaging modality used to generate two-dimensional cross-sectional images representing impedance change in the thorax. The impedance of lung tissue changes with change in air content of the lungs; hence, EIT can be used to examine regional lung ventilation in patients with abnormal lungs. In lung EIT, electrodes are attached around the circumference of the thorax to inject small alternating currents and measure resulting voltages. In contrast to X-ray computed tomography (CT), EIT images do not depict a thorax slice of well defined thickness, but instead visualize a lens-shaped region around the electrode plane, which results from diffuse current propagation in the thorax. Usually, this is considered a drawback, since image interpretation is impeded if 'off-plane' conductivity changes are projected onto the reconstructed two-dimensional image. In this paper we describe an approach that takes advantage of current propagation below and above the electrode plane. The approach enables estimation of the individual conductivity change in each lung lobe from boundary voltage measurements. This could be used to monitor disease progression in patients with obstructive lung diseases, such as chronic obstructive pulmonary disease (COPD) or cystic fibrosis (CF) and to obtain a more comprehensive insight into the pathophysiology of the lung. Methods: Electrode voltages resulting from different conductivities in each lung lobe were simulated utilizing a realistic 3D finite element model (FEM) of the human thorax and the lungs. Overall 200 different patterns of conductivity change were simulated. A 'lobe reconstruction' algorithm was developed, applying patient-specific anatomical information in the reconstruction process. A standard EIT image reconstruction algorithm and the proposed 'lobe reconstruction' algorithm were used to estimate conductivity change in the lobes. The agreement between simulated and reconstructed conductivity change in particular lobes were compared using Bland-Altman plots, correlation plots and linear regression. To test the applicability of the approach in a realistic scenario, EIT measurements of a patient suffering from cystic fibrosis (CF) were carried out. Results: Conductivity changes in each lobe generate specific patterns of voltage change. These can be used to estimate the conductivity change in lobes from measured boundary voltage. The correlation coefficient between simulated and reconstructed conductivity change in particular lobes is r > 0.89 for all lobes. Unknown position of the electrode plane leads to over-or underestimation of reconstructed conductivity change. Slight mismatches (+/- 5% of the forward model height) between the actual position of the electrode plane and the position used in the reconstruction model lead to regression coefficients of 0.7 to 1.3 between simulated and reconstructed conductivity change in the lobes. Conclusion: The presented approach enhances common reconstruction methods by providing information about anatomically assignable units and thus facilitates image interpretation, since impedance change and thus ventilation of each lobe is directly determined in the reconstructions. (C) 2016 American Association of Physicists in Medicine
引用
收藏
页码:426 / 436
页数:11
相关论文
共 50 条
  • [31] Advances of deep learning in electrical impedance tomography image reconstruction
    Zhang, Tao
    Tian, Xiang
    Liu, XueChao
    Ye, JianAn
    Fu, Feng
    Shi, XueTao
    Liu, RuiGang
    Xu, CanHua
    FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2022, 10
  • [32] IMAGE-RECONSTRUCTION PROBLEMS IN ELECTRICAL-IMPEDANCE TOMOGRAPHY
    BARBER, DC
    CLINICAL PHYSICS AND PHYSIOLOGICAL MEASUREMENT, 1990, 11 (02): : 181 - 182
  • [33] New image reconstruction method in dynamic electrical impedance tomography
    Hou, WD
    Mo, WL
    ELECTRONIC IMAGING AND MULTIMEDIA TECHNOLOGY III, 2002, 4925 : 1 - 4
  • [34] LEARNING SPARSIFYING TRANSFORMS FOR IMAGE RECONSTRUCTION IN ELECTRICAL IMPEDANCE TOMOGRAPHY
    Yang, Kaiyi
    Borijindargoon, Narong
    Ng, Boon Poh
    Ravishankar, Saiprasad
    Wen, Bihan
    2021 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP 2021), 2021, : 1405 - 1409
  • [35] Image reconstruction incorporated with the skull inhomogeneity for electrical impedance tomography
    Ni, Ansheng
    Dong, Xiuzhen
    Yang, Guosheng
    Fu, Feng
    Tang, Chi
    COMPUTERIZED MEDICAL IMAGING AND GRAPHICS, 2008, 32 (05) : 409 - 415
  • [36] Sparse image reconstruction of intracerebral hemorrhage with electrical impedance tomography
    Shi, Yanyan
    Wu, Yuehui
    Wang, Meng
    Tian, Zhiwei
    Kong, Xiaolong
    He, Xiaoyue
    JOURNAL OF MEDICAL IMAGING, 2021, 8 (01)
  • [37] Influence of Boundary Deformation on Image Reconstruction in Electrical Impedance Tomography
    Wang, Lei
    Deng, Juan
    Zhao, Shu
    Wang, Hong
    Sha, Hong
    Wang, Yan
    JOURNAL OF MEDICAL IMAGING AND HEALTH INFORMATICS, 2020, 10 (10) : 2274 - 2278
  • [38] Adaptive Kaczmarz method for image reconstruction in electrical impedance tomography
    Li, Taoran
    Kao, Tzu-Jen
    Isaacson, David
    Newell, Jonathan C.
    Saulnier, Gary J.
    PHYSIOLOGICAL MEASUREMENT, 2013, 34 (06) : 595 - 608
  • [39] Stochastic Optimization Approaches to Image Reconstruction in Electrical Impedance Tomography
    Boo, Chang-Jin
    Kim, Ho-Chan
    Kang, Min-Jae
    Lee, Kwang Y.
    COMPUTATIONAL SCIENCE AND ITS APPLICATIONS - ICCSA 2010, PT 2, PROCEEDINGS, 2010, 6017 : 99 - 109
  • [40] Image Reconstruction Algorithm for Electrical Impedance Tomography Based on Block Sparse Bayesian Learning
    Liu, Shengheng
    Jia, Jiabin
    Yang, Yunjie
    2017 IEEE INTERNATIONAL CONFERENCE ON IMAGING SYSTEMS AND TECHNIQUES (IST), 2017, : 267 - 271