Advances of deep learning in electrical impedance tomography image reconstruction

被引:11
|
作者
Zhang, Tao [1 ,2 ,3 ]
Tian, Xiang [1 ,2 ]
Liu, XueChao [1 ,2 ]
Ye, JianAn [1 ,2 ]
Fu, Feng [1 ,2 ]
Shi, XueTao [1 ,2 ]
Liu, RuiGang [1 ,2 ]
Xu, CanHua [1 ,2 ]
机构
[1] Fourth Mil Med Univ, Dept Biomed Engn, Xian, Peoples R China
[2] Shaanxi Key Lab Bioelectromagnet Detect & Intellig, Xian, Peoples R China
[3] Xining Joint Logist Support Ctr, Drug & Instrument Supervis & Inspect Stn, Lanzhou, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
electrical impedance tomography; deep learning; image reconstruction; medical imaging; research progress; D-BAR METHOD; EIT RECONSTRUCTION; NEURAL-NETWORK; ALGORITHM; BRAIN; FEASIBILITY;
D O I
10.3389/fbioe.2022.1019531
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Electrical impedance tomography (EIT) has been widely used in biomedical research because of its advantages of real-time imaging and nature of being non-invasive and radiation-free. Additionally, it can reconstruct the distribution or changes in electrical properties in the sensing area. Recently, with the significant advancements in the use of deep learning in intelligent medical imaging, EIT image reconstruction based on deep learning has received considerable attention. This study introduces the basic principles of EIT and summarizes the application progress of deep learning in EIT image reconstruction with regards to three aspects: a single network reconstruction, deep learning combined with traditional algorithm reconstruction, and multiple network hybrid reconstruction. In future, optimizing the datasets may be the main challenge in applying deep learning for EIT image reconstruction. Adopting a better network structure, focusing on the joint reconstruction of EIT and traditional algorithms, and using multimodal deep learning-based EIT may be the solution to existing problems. In general, deep learning offers a fresh approach for improving the performance of EIT image reconstruction and could be the foundation for building an intelligent integrated EIT diagnostic system in the future.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Deep learning correction for image reconstruction in electrical impedance tomography using UNet model
    Maciura, Lukasz
    Rymarczyk, Tomasz
    Wojcik, Dariusz
    Gauda, Konrad
    Kowalski, Marcin
    [J]. PRZEGLAD ELEKTROTECHNICZNY, 2023, 99 (06): : 134 - 137
  • [2] LEARNING SPARSIFYING TRANSFORMS FOR IMAGE RECONSTRUCTION IN ELECTRICAL IMPEDANCE TOMOGRAPHY
    Yang, Kaiyi
    Borijindargoon, Narong
    Ng, Boon Poh
    Ravishankar, Saiprasad
    Wen, Bihan
    [J]. 2021 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP 2021), 2021, : 1405 - 1409
  • [3] Temporal image reconstruction in electrical impedance tomography
    Adler, Andy
    Dai, Tao
    Lionheart, William R. B.
    [J]. PHYSIOLOGICAL MEASUREMENT, 2007, 28 (07) : S1 - S11
  • [4] RCRC: A Deep Neural Network for Dynamic Image Reconstruction of Electrical Impedance Tomography
    Ren, Shangjie
    Guan, Ru
    Liang, Guanghui
    Dong, Feng
    [J]. IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2021, 70
  • [5] AN IMAGE RECONSTRUCTION FRAMEWORK BASED ON DEEP NEURAL NETWORK FOR ELECTRICAL IMPEDANCE TOMOGRAPHY
    Li, Xiuyan
    Lu, Yang
    Wang, Jianming
    Dang, Xin
    Wang, Qi
    Duan, Xiaojie
    Sun, Yukuan
    [J]. 2017 24TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2017, : 3585 - 3589
  • [6] Electrical impedance tomography image reconstruction based on backprojection and extreme learning machines
    Gomes J.C.
    Barbosa V.A.F.
    Ribeiro D.E.
    de Souza R.E.
    dos Santos W.P.
    [J]. Research on Biomedical Engineering, 2020, 36 (04) : 399 - 410
  • [7] Image Reconstruction Using Supervised Learning in Wearable Electrical Impedance Tomography of the Thorax
    Ivanenko, Mikhail
    Smolik, Waldemar T.
    Wanta, Damian
    Midura, Mateusz
    Wroblewski, Przemyslaw
    Hou, Xiaohan
    Yan, Xiaoheng
    [J]. SENSORS, 2023, 23 (18)
  • [8] Improving image reconstruction in electrical capacitance tomography based on deep learning
    Zhu, Hai
    Sun, Jiangtao
    Xu, Lijun
    Sun, Shijie
    [J]. 2019 IEEE INTERNATIONAL CONFERENCE ON IMAGING SYSTEMS & TECHNIQUES (IST 2019), 2019,
  • [9] Solving electrical impedance tomography with deep learning
    Fan, Yuwei
    Ying, Lexing
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2020, 404
  • [10] Logistic regression in image reconstruction in electrical impedance tomography
    Kozlowski, Edward
    Rymarczyk, Tomasz
    Klosowski, Grzegorz
    Cieplak, Tomasz
    [J]. PRZEGLAD ELEKTROTECHNICZNY, 2020, 96 (05): : 95 - 98