A computationally efficient method for reconstructing sequences of MR images from undersampled k-space data

被引:5
|
作者
Zonoobi, Dornoosh [1 ]
Kassim, Ashraf A. [1 ]
机构
[1] Natl Univ Singapore, Dept Elect & Comp Engn, Singapore 117548, Singapore
关键词
Dynamic MRI reconstruction; Iterative thresholding method; Priori-knowledge;
D O I
10.1016/j.media.2014.04.010
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we propose a Compressive Sensing based approach to the problem of real-time reconstruction of MR image sequences. Our proposed method is able to extract useful priori information and incorporate it into a modified iterative thresholding algorithm for fast casual reconstruction of MR images from highly undersampled k-space data. Through extensive experimental results we show that our proposed method achieves superior reconstruction quality, while having a lower computational complexity and memory requirements compared to the other state-of-the-art methods. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:857 / 865
页数:9
相关论文
共 50 条
  • [41] Viewing the effective k-space coverage of MR images: phantom experiments with fast Fourier transform
    Menke, Jan
    Helms, Gunther
    Larsen, Joerg
    MAGNETIC RESONANCE IMAGING, 2010, 28 (01) : 87 - 94
  • [42] Nearfield acoustic holography based on k-space data extrapolation method
    Xu, Liang
    Bi, Chuanxing
    Chen, Jian
    Chen, Xinzhao
    Jixie Gongcheng Xuebao/Chinese Journal of Mechanical Engineering, 2007, 43 (09): : 84 - 90
  • [43] Emerging Trends in Fast MRI Using Deep-Learning Reconstruction on Undersampled k-Space Data: A Systematic Review
    Singh, Dilbag
    Monga, Anmol
    de Moura, Hector L.
    Zhang, Xiaoxia
    Zibetti, Marcelo V. W.
    Regatte, Ravinder R.
    BIOENGINEERING-BASEL, 2023, 10 (09):
  • [44] Iterative reconstruction of magnetic resonance images from arbitrary samples in k-space
    Desplanques, B
    Cornelis, J
    Achten, E
    van de Walle, R
    Lemahieu, I
    IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2002, 49 (05) : 2268 - 2273
  • [45] Improved least squares MR image reconstruction using estimates of k-Space data consistency
    Johnson, Kevin M.
    Block, Walter F.
    Reeder, Scott. B.
    Samsonov, Alexey
    MAGNETIC RESONANCE IN MEDICINE, 2012, 67 (06) : 1600 - 1608
  • [46] Effectively Training MRI Reconstruction Network via Sequentially Using Undersampled k-Space Data with Very Low Frequency Gaps
    Xing, Tian-Yi
    Li, Xiao-Xin
    Chen, Zhi-Jie
    Zheng, Xi-Yu
    Zhang, Fan
    BIOINFORMATICS RESEARCH AND APPLICATIONS, ISBRA 2022, 2022, 13760 : 30 - 40
  • [47] MR image reconstruction from partial k-space using singularity function representation
    Miao, Peng
    Hiba, Bassem
    Luo, Jianhua
    Sappey-Marinier, Dominique
    Magnin, Isabelle
    Zhu, Yuemin
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2007, 571 (1-2): : 239 - 242
  • [48] Image reconstruction method without using interpolation in nonuniform sampled K-space of MR imaging
    Moriguchi, H
    Wendt, M
    Duerk, JL
    RADIOLOGY, 1999, 213P : 232 - 232
  • [49] MR thermometry characterization of a hyperthermia ultrasound array designed using the k-space computational method
    Al-Bataineh, Osama M.
    Collins, Christopher M.
    Park, Eun-Joo
    Lee, Hotaik
    Smith, Nadine Barrie
    BIOMEDICAL ENGINEERING ONLINE, 2006, 5 (1)
  • [50] Note on the Iterative MRI Reconstruction from Nonuniform k-Space Data
    Knopp, Tobias
    Kunis, Stefan
    Potts, Daniel
    INTERNATIONAL JOURNAL OF BIOMEDICAL IMAGING, 2007, 2007