A computationally efficient method for reconstructing sequences of MR images from undersampled k-space data

被引:5
|
作者
Zonoobi, Dornoosh [1 ]
Kassim, Ashraf A. [1 ]
机构
[1] Natl Univ Singapore, Dept Elect & Comp Engn, Singapore 117548, Singapore
关键词
Dynamic MRI reconstruction; Iterative thresholding method; Priori-knowledge;
D O I
10.1016/j.media.2014.04.010
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we propose a Compressive Sensing based approach to the problem of real-time reconstruction of MR image sequences. Our proposed method is able to extract useful priori information and incorporate it into a modified iterative thresholding algorithm for fast casual reconstruction of MR images from highly undersampled k-space data. Through extensive experimental results we show that our proposed method achieves superior reconstruction quality, while having a lower computational complexity and memory requirements compared to the other state-of-the-art methods. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:857 / 865
页数:9
相关论文
共 50 条
  • [31] Constrained Higher Degree Total p-variation Minimization for MRI Reconstruction From Undersampled K-space Data
    Jin, Jiaquan
    Du, Hongwei
    Qiu, Bensheng
    Xu, Jinzhang
    CURRENT MEDICAL IMAGING, 2018, 14 (06) : 995 - 1005
  • [32] A method to measure arbitrary k-space trajectories for rapid MR imaging
    Mason, GF
    Harshbarger, T
    Hetherington, HP
    Zhang, Y
    Pohost, GM
    Twieg, DB
    MAGNETIC RESONANCE IN MEDICINE, 1997, 38 (03) : 492 - 496
  • [33] A statistical method for characterizing the noise in nonlinearly reconstructed images from undersampled MR data: The POCS example
    Sabati, Mohammad
    Peng, Haidong
    Lauzon, M. Louis
    Frayne, Richard
    MAGNETIC RESONANCE IMAGING, 2013, 31 (09) : 1587 - 1598
  • [34] Compressed Sensing MRI Reconstruction from Highly Undersampled k-Space Data Using Nonsubsampled Shearlet Transform Sparsity Prior
    Yuan, Min
    Yang, Bingxin
    Ma, Yide
    Zhang, Jiuwen
    Zhang, Runpu
    Zhang, Caiyuan
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2015, 2015
  • [35] Compressed sensing using a deep adaptive perceptual generative adversarial network for MRI reconstruction from undersampled K-space data
    Wu, Kun
    Xia, Yan
    Ravikumar, Nishant
    Frangi, Alejandro F.
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2024, 96
  • [36] Fast keyhole MR imaging using optimized k-space data acquisition
    Sersa, I
    Medic, J
    Beravs, K
    Demsar, F
    ELECTRO- AND MAGNETOBIOLOGY, 1998, 17 (02): : 307 - 321
  • [37] Simple method for MR gradient system characterization and k-space trajectory estimation
    Addy, Nii Okai
    Wu, Holden H.
    Nishimura, Dwight G.
    MAGNETIC RESONANCE IN MEDICINE, 2012, 68 (01) : 120 - 129
  • [38] A comparison between segmented k-space FLASH and interleaved spiral MR coronary angiography sequences
    Taylor, AM
    Keegan, J
    Jhooti, P
    Gatehouse, PD
    Firmin, DN
    Pennell, DJ
    JOURNAL OF MAGNETIC RESONANCE IMAGING, 2000, 11 (04) : 394 - 400
  • [39] Nonrigid 3D motion estimation at high temporal resolution from prospectively undersampled k-space data using low-rank MR-MOTUS
    Huttinga, Niek R. F.
    Bruijnen, Tom
    van den Berg, Cornelis A. T.
    Sbrizzi, Alessandro
    MAGNETIC RESONANCE IN MEDICINE, 2021, 85 (04) : 2309 - 2326
  • [40] Deep learning for fast MR imaging: A review for learning reconstruction from incomplete k-space data
    Wang, Shanshan
    Xiao, Taohui
    Liu, Qiegen
    Zheng, Hairong
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2021, 68