Entropy Stable Schemes For Ten-Moment Gaussian Closure Equations

被引:12
|
作者
Sen, Chhanda [1 ]
Kumar, Harish [1 ]
机构
[1] IIT Delhi, Dept Math, Hauz Khas, New Delhi 110016, India
关键词
Ten-Moment Gaussian closure equations; Symmetrization; Entropy stability; Finite difference scheme; MOMENT CLOSURE; SYSTEMS;
D O I
10.1007/s10915-017-0579-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we propose high order, semi-discrete, entropy stable, finite difference schemes for Ten-Moment Gaussian Closure equations. The crucial components of these schemes are an entropy conservative flux and suitable high order entropy dissipative operators to ensure entropy stability. We design two numerical fluxes, one is approximately entropy conservative, and another is entropy conservative flux. For the construction of appropriate entropy dissipative operators, we also derive entropy scaled right eigenvectors. This is used for sign preserving reconstruction of scaled entropy variables, which results in second and third order entropy stable schemes. We also extend these schemes to a plasma flow model with source term. Several numerical results are presented for homogeneous and non-homogeneous cases to demonstrate stability and performance of these schemes.
引用
收藏
页码:1128 / 1155
页数:28
相关论文
共 50 条
  • [41] ENTROPY STABLE SPECTRAL COLLOCATION SCHEMES FOR THE NAVIER-STOKES EQUATIONS: DISCONTINUOUS INTERFACES
    Carpenter, Mark H.
    Fisher, Travis C.
    Nielsen, Eric J.
    Frankel, Steven H.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2014, 36 (05): : B835 - B867
  • [42] Numerical approximations of the 10-moment Gaussian closure
    Berthon, Christophe
    MATHEMATICS OF COMPUTATION, 2006, 75 (256) : 1809 - 1831
  • [43] Quasi-Entropy Closure: a fast and reliable approach to close the moment equations of the Chemical Master Equation
    Wagner, Vincent
    Castellaz, Benjamin
    Oesting, Marco
    Radde, Nicole
    BIOINFORMATICS, 2022, 38 (18) : 4352 - 4359
  • [44] ENTROPY CONSERVATIVE AND ENTROPY STABLE SCHEMES FOR NONCONSERVATIVE HYPERBOLIC SYSTEMS
    Castro, Manuel J.
    Fjordholm, Ulrik S.
    Mishra, Siddhartha
    Pares, Carlos
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2013, 51 (03) : 1371 - 1391
  • [45] Kinetic schemes and boundary conditions for moment equations
    Struchtrup, H
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2000, 51 (03): : 346 - 365
  • [46] Kinetic schemes and boundary conditions for moment equations
    H. Struchtrup
    Zeitschrift für angewandte Mathematik und Physik ZAMP, 2000, 51 : 346 - 365
  • [47] PROJECTIVE INTEGRATION SCHEMES FOR HYPERBOLIC MOMENT EQUATIONS
    Koellermeier, Julian
    Samaey, Giovanni
    KINETIC AND RELATED MODELS, 2021, 14 (02) : 353 - 387
  • [48] Moment expansions in spatial ecological models and moment closure through gaussian approximation
    Gandhi, A
    Levin, S
    Orszag, S
    BULLETIN OF MATHEMATICAL BIOLOGY, 2000, 62 (04) : 595 - 632
  • [49] Entropy-Stable Schemes for the Euler Equations with Far-Field and Wall Boundary Conditions
    Magnus Svärd
    Hatice Özcan
    Journal of Scientific Computing, 2014, 58 : 61 - 89
  • [50] Entropy Stable Finite Difference Schemes for Chew, Goldberger and Low Anisotropic Plasma Flow Equations
    Singh, Chetan
    Yadav, Anshu
    Bhoriya, Deepak
    Kumar, Harish
    Balsara, Dinshaw S.
    JOURNAL OF SCIENTIFIC COMPUTING, 2025, 102 (02)