Entropy Stable Schemes For Ten-Moment Gaussian Closure Equations

被引:12
|
作者
Sen, Chhanda [1 ]
Kumar, Harish [1 ]
机构
[1] IIT Delhi, Dept Math, Hauz Khas, New Delhi 110016, India
关键词
Ten-Moment Gaussian closure equations; Symmetrization; Entropy stability; Finite difference scheme; MOMENT CLOSURE; SYSTEMS;
D O I
10.1007/s10915-017-0579-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we propose high order, semi-discrete, entropy stable, finite difference schemes for Ten-Moment Gaussian Closure equations. The crucial components of these schemes are an entropy conservative flux and suitable high order entropy dissipative operators to ensure entropy stability. We design two numerical fluxes, one is approximately entropy conservative, and another is entropy conservative flux. For the construction of appropriate entropy dissipative operators, we also derive entropy scaled right eigenvectors. This is used for sign preserving reconstruction of scaled entropy variables, which results in second and third order entropy stable schemes. We also extend these schemes to a plasma flow model with source term. Several numerical results are presented for homogeneous and non-homogeneous cases to demonstrate stability and performance of these schemes.
引用
收藏
页码:1128 / 1155
页数:28
相关论文
共 50 条
  • [21] Entropy-stable schemes for relativistic hydrodynamics equations
    Deepak Bhoriya
    Harish Kumar
    Zeitschrift für angewandte Mathematik und Physik, 2020, 71
  • [22] Entropy-stable schemes for relativistic hydrodynamics equations
    Bhoriya, Deepak
    Kumar, Harish
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2020, 71 (01):
  • [23] Ten-moment fluid model for low-temperature magnetized plasmas
    Kuldinow, Derek Amur
    Yamashita, Yusuke
    Hara, Kentaro
    PHYSICS OF PLASMAS, 2024, 31 (12)
  • [24] A modified Gaussian moment closure method for nonlinear stochastic differential equations
    H. Makarem
    H. Nejat Pishkenari
    G. R. Vossoughi
    Nonlinear Dynamics, 2017, 89 : 2609 - 2620
  • [25] A modified Gaussian moment closure method for nonlinear stochastic differential equations
    Makarem, H.
    Pishkenari, H. Nejat
    Vossoughi, G. R.
    NONLINEAR DYNAMICS, 2017, 89 (04) : 2609 - 2620
  • [26] ENTROPY STABLE SCHEMES FOR DEGENERATE CONVECTION-DIFFUSION EQUATIONS
    Jerez, Silvia
    Pares, Carlos
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2017, 55 (01) : 240 - 264
  • [27] Entropy Stable Schemes for the Shear Shallow Water Model Equations
    Yadav A.
    Bhoriya D.
    Kumar H.
    Chandrashekar P.
    Journal of Scientific Computing, 2023, 97 (03)
  • [28] Diffusion approximation and entropy-based moment closure for kinetic equations
    Coulombel, JF
    Golse, F
    Goudon, T
    ASYMPTOTIC ANALYSIS, 2005, 45 (1-2) : 1 - 39
  • [29] The scaled entropy variables reconstruction for entropy stable schemes with application to shallow water equations
    Liu, Qingsheng
    Liu, Youqiong
    Feng, Jianhu
    COMPUTERS & FLUIDS, 2019, 192
  • [30] Entropy Stable Numerical Schemes for Two-Fluid Plasma Equations
    Kumar, Harish
    Mishra, Siddhartha
    JOURNAL OF SCIENTIFIC COMPUTING, 2012, 52 (02) : 401 - 425