The Power State Estimation Method for High Energy Ternary Lithium-ion Batteries Based on the Online Collaborative Equivalent Modeling and Adaptive Correction - Unscented Kalman Filter

被引:1
|
作者
Fan, Yongcun [1 ]
Wang, Shunli [1 ]
Jiang, Cong [1 ]
Fernandez, Carlos [2 ]
机构
[1] Southwest Univ Sci & Technol, Sch Informat Engn, Mianyang 621010, Sichuan, Peoples R China
[2] Robert Gordon Univ, Sch Pharm & Life Sci, Aberdeen AB1 7GJ, Scotland
来源
基金
中国国家自然科学基金;
关键词
high energy lithium-ion battery; collaborative equivalent model; power state estimation; adaptive correction - Unscented Kalman Filter; output voltage tracking; OF-CHARGE ESTIMATION; HEALTH ESTIMATION; MANAGEMENT; SYSTEM; VOLTAGE; TEMPERATURE; RESISTANCE; VEHICLES; BEHAVIOR; PACK;
D O I
10.20964/2021.01.70
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Accurate power state estimation plays an important role in the real-time working state monitoring and safety control of high energy lithium-ion batteries. To solve the difficulty and low accuracy problems in its real-time power state estimation under various operating conditions, the working characteristics of the lithium cobalt oxide batteries are analyzed comprehensively under various operating conditions. An improved collaborative equivalent model is established to characterize its working characteristics and then the initial power state value is calibrated by using the experimental relationship between open circuit voltage and state of charge considering the importance of the precious estimation accuracy for the later iterate calculation and correction. And then, an adaptive correction - Unscented Kalman Filter algorithm is put forward and applied for the state of charge estimation and output voltage tracking so as to realize the real-time high-precision lithium-ion battery power state estimation. The experimental results show that the established model can predict the power state of high energy lithium-ion batteries conveniently with high convergency speed within 30 seconds, accurate output voltage tracking effect within 32 mV and high accuracy, the max estimation error of which is 3.87%, providing an effective working state monitoring and safety protection method in the cleaner production and power supply processes of the high energy lithium-ion batteries.
引用
收藏
页码:1 / 28
页数:28
相关论文
共 50 条
  • [1] Adaptive unscented Kalman filter based state of energy and power capability estimation approach for lithium-ion battery
    Zhang, Weige
    Shi, Wei
    Ma, Zeyu
    JOURNAL OF POWER SOURCES, 2015, 289 : 50 - 62
  • [2] Electrochemical model-based state estimation for lithium-ion batteries with adaptive unscented Kalman filter
    Li, Weihan
    Fan, Yue
    Ringbeck, Florian
    Jost, Dominik
    Han, Xuebing
    Ouyang, Minggao
    Sauer, Dirk Uwe
    JOURNAL OF POWER SOURCES, 2020, 476
  • [3] A method for state of charge and state of health estimation of lithium-ion battery based on adaptive unscented Kalman filter
    Liu, Shulin
    Dong, Xia
    Yu, Xiaodong
    Ren, Xiaoqing
    Zhang, Jinfeng
    Zhu, Rui
    ENERGY REPORTS, 2022, 8 : 426 - 436
  • [4] A modified model based state of charge estimation of power lithium-ion batteries using unscented Kalman filter
    Tian, Yong
    Xia, Bizhong
    Sun, Wei
    Xu, Zhihui
    Zheng, Weiwei
    JOURNAL OF POWER SOURCES, 2014, 270 : 619 - 626
  • [5] An Adaptive Square Root Unscented Kalman Filter Approach for State of Charge Estimation of Lithium-Ion Batteries
    Liu, Shulin
    Cui, Naxin
    Zhang, Chenghui
    ENERGIES, 2017, 10 (09):
  • [6] Online parameters identification and state of charge estimation for lithium-ion batteries using improved adaptive dual unscented Kalman filter
    Peng, Nian
    Zhang, Shuzhi
    Guo, Xu
    Zhang, Xiongwen
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2021, 45 (01) : 975 - 990
  • [7] Adaptive state-of-charge estimation of lithium-ion batteries based on square-root unscented Kalman filter
    Chen, Liping
    Wu, Xiaobo
    Lopes, Antonio M.
    Yin, Lisheng
    Li, Penghua
    ENERGY, 2022, 252
  • [8] State of Charge Estimation of Lithium-Ion Battery Based on Improved Adaptive Unscented Kalman Filter
    Xing, Jie
    Wu, Peng
    SUSTAINABILITY, 2021, 13 (09)
  • [9] State-of-Charge Estimation of Lithium-ion Batteries using Extended Kalman filter and Unscented Kalman filter
    Jokic, Ivan
    Zecevic, Zarko
    Krstajic, Bozo
    2018 23RD INTERNATIONAL SCIENTIFIC-PROFESSIONAL CONFERENCE ON INFORMATION TECHNOLOGY (IT), 2018,
  • [10] A New State of Charge Estimation Algorithm for Lithium-Ion Batteries Based on the Fractional Unscented Kalman Filter
    Chen, Yixing
    Huang, Deqing
    Zhu, Qiao
    Liu, Weiqun
    Liu, Congzhi
    Xiong, Neng
    ENERGIES, 2017, 10 (09)