Online parameters identification and state of charge estimation for lithium-ion batteries using improved adaptive dual unscented Kalman filter

被引:63
|
作者
Peng, Nian [1 ]
Zhang, Shuzhi [1 ]
Guo, Xu [1 ]
Zhang, Xiongwen [1 ]
机构
[1] Xi An Jiao Tong Univ, MOE Key Lab Thermofluid Sci & Engn, Xian 710049, Peoples R China
关键词
adaptive dual unscented Kalman filter; Lithium-ion battery; parameters identification; robustness analysis; state of charge; EQUIVALENT-CIRCUIT MODELS; MANAGEMENT-SYSTEMS; PART; PACKS; OPTIMIZATION;
D O I
10.1002/er.6088
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
State of charge (SOC) is a vital parameter which helps make full use of battery capacity and improve battery safety control. In this paper, an improved adaptive dual unscented Kalman filter (ADUKF) algorithm is adopted to realize co-estimation of the battery model parameters and SOC. Notably, the covariance matching method that can adapt the system noise covariance and the measurement noise covariance is used to improve the estimation accuracy. Besides, singular value decomposition (SVD) is utilized to deal with the non-positive error covariance matrix in both unscented Kalman filters, further enhancing the stability of estimation algorithm. Verification results under Dynamic Stress test and Federal Urban Driving Schedule test indicate that improved ADUKF can achieve more accurate SOC estimates with error band controlled within 2.8%, while that of traditional dual unscented Kalman filter (DUKF) can only be controlled within 5%. Moreover, robustness analysis is also conducted and the validation results present that the proposed algorithm can still provide precise SOC prediction results under some disturbances, such as erroneous initial SOC, inaccurate battery capacity, and various ambient temperatures.
引用
收藏
页码:975 / 990
页数:16
相关论文
共 50 条
  • [1] State of Charge and parameters estimation for Lithium-ion battery using Dual Adaptive Unscented Kalman Filter
    Guo, Hongzhen
    Wang, Zhonghua
    Li, Yueyang
    Wang, Dongxue
    Wang, Guangying
    [J]. 2017 29TH CHINESE CONTROL AND DECISION CONFERENCE (CCDC), 2017, : 4962 - 4966
  • [2] State of charge estimation for lithium-ion battery based on improved online parameters identification and adaptive square root unscented Kalman filter
    Wang, Juntao
    Song, Jifeng
    Li, Yuanlong
    Ren, Tao
    Yang, Zhengye
    [J]. JOURNAL OF ENERGY STORAGE, 2024, 77
  • [3] An Online State of Charge Estimation Algorithm for Lithium-Ion Batteries Using an Improved Adaptive Cubature Kalman Filter
    Zeng, Zhibing
    Tian, Jindong
    Li, Dong
    Tian, Yong
    [J]. ENERGIES, 2018, 11 (01):
  • [4] State-of-Charge Estimation of Lithium-ion Batteries using Extended Kalman filter and Unscented Kalman filter
    Jokic, Ivan
    Zecevic, Zarko
    Krstajic, Bozo
    [J]. 2018 23RD INTERNATIONAL SCIENTIFIC-PROFESSIONAL CONFERENCE ON INFORMATION TECHNOLOGY (IT), 2018,
  • [5] State of Charge Estimation of Lithium-Ion Battery Based on Improved Adaptive Unscented Kalman Filter
    Xing, Jie
    Wu, Peng
    [J]. SUSTAINABILITY, 2021, 13 (09)
  • [6] Online Parameters Identification and State of Charge Estimation for Lithium-Ion Battery Using Adaptive Cubature Kalman Filter
    Li, Wei
    Luo, Maji
    Tan, Yaqian
    Cui, Xiangyu
    [J]. WORLD ELECTRIC VEHICLE JOURNAL, 2021, 12 (03):
  • [7] State-of-charge estimation for lithium-ion batteries based on modified unscented Kalman filter using improved parameter identification
    Yao, Bin
    Cai, Yongxiang
    Liu, Wei
    Wang, Yang
    Chen, Xin
    Liao, Qiangqiang
    Fu, Zaiguo
    Cheng, Zhiyuan
    [J]. INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2024, 19 (05):
  • [8] An improved adaptive unscented kalman filtering for state of charge online estimation of lithium-ion battery
    Zhang, Shuzhi
    Guo, Xu
    Zhang, Xiongwen
    [J]. JOURNAL OF ENERGY STORAGE, 2020, 32
  • [9] State of charge estimation for lithium-ion batteries based on adaptive dual Kalman filter
    Xu, Yidan
    Hu, Minghui
    Zhou, Anjian
    Li, Yunxiao
    Li, Shuxian
    Fu, Chunyun
    Gong, Changchao
    [J]. APPLIED MATHEMATICAL MODELLING, 2020, 77 : 1255 - 1272
  • [10] Online Estimation of Model Parameters and State-of-Charge of Lithium-Ion Battery Using Unscented Kalman Filter
    Partovibakhsh, Maral
    Liu, Guangjun
    [J]. 2012 AMERICAN CONTROL CONFERENCE (ACC), 2012, : 3962 - 3967