Efficient extraction of quantum Hamiltonians from optimal laboratory data

被引:8
|
作者
Geremia, JM [1 ]
Rabitz, HA
机构
[1] CALTECH, Pasadena, CA 91125 USA
[2] Princeton Univ, Dept Chem, Princeton, NJ 08540 USA
来源
PHYSICAL REVIEW A | 2004年 / 70卷 / 02期
关键词
D O I
10.1103/PhysRevA.70.023804
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Optimal identification (OI) is a recently developed procedure for extracting information about quantum Hamiltonians from experimental data. It employs techniques from coherent learning control to drive the quantum system such that dynamical measurements provide maximal information about its Hamiltonian. OI is an optimal procedure as initially presented; however, the data inversion component is computationally expensive. Here, we demonstrate that highly efficient global, nonlinear, map-facilitated inversion procedures can be combined with the OI concept to make it more suitable for laboratory implementation. A simulation of map-facilitated OI illustrates how the input-output maps can greatly accelerate the data inversion process.
引用
收藏
页码:023804 / 1
页数:6
相关论文
共 50 条
  • [31] Adaptive algorithms and networks for optimal feature extraction from Gaussian data
    Ghassabeh, Youness Aliyari
    Moghaddam, Hamid Abrishami
    PATTERN RECOGNITION LETTERS, 2010, 31 (11) : 1331 - 1341
  • [32] Fast adaptive algorithms for optimal feature extraction from Gaussian data
    Ghassabeh, Youness Aliyari
    Rudzicz, Frank
    Moghaddam, Hamid Abrishami
    PATTERN RECOGNITION LETTERS, 2016, 70 : 73 - 79
  • [33] Optimal control for multi-parameter quantum estimation with time-dependent Hamiltonians
    Xie, Dong
    Xu, Chunling
    RESULTS IN PHYSICS, 2019, 15
  • [34] Quantum autoencoders for efficient compression of quantum data
    Romero, Jonathan
    Olson, Jonathan P.
    Aspuru-Guzik, Alan
    QUANTUM SCIENCE AND TECHNOLOGY, 2017, 2 (04):
  • [35] Local modular Hamiltonians from the quantum null energy condition
    Koeller, Jason
    Leichenauer, Stefan
    Levine, Adam
    Shahbazi-Moghaddam, Arvin
    PHYSICAL REVIEW D, 2018, 97 (06)
  • [36] QUANTUM HAMILTONIANS FROM LEVEL STATISTICS VIA DRESSING TRANSFORMATIONS
    RAMANI, A
    GRAMMATICOS, B
    CAURIER, E
    MATHEMATICS AND COMPUTERS IN SIMULATION, 1994, 37 (4-5) : 451 - 459
  • [37] Building models of topological quantum criticality from pivot Hamiltonians
    Tantivasadakarn, Nathanan
    Thorngren, Ryan
    Vishwanath, Ashvin
    Verresen, Ruben
    SCIPOST PHYSICS, 2023, 14 (02):
  • [38] Learning quantum Hamiltonians from single-qubit measurements
    Che, Liangyu
    Wei, Chao
    Huang, Yulei
    Zhao, Dafa
    Xue, Shunzhong
    Nie, Xinfang
    Li, Jun
    Lu, Dawei
    Xin, Tao
    PHYSICAL REVIEW RESEARCH, 2021, 3 (02):
  • [39] Correct Quantum Chemistry in a Minimal Basis from Effective Hamiltonians
    Watson, Thomas J., Jr.
    Chan, Garnet Kin-Lic
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2016, 12 (02) : 512 - 522
  • [40] Guaranteed efficient energy estimation of quantum many-body Hamiltonians using ShadowGrouping
    Gresch, Alexander
    Kliesch, Martin
    NATURE COMMUNICATIONS, 2025, 16 (01)