Learning quantum Hamiltonians from single-qubit measurements

被引:18
|
作者
Che, Liangyu [1 ,2 ,3 ]
Wei, Chao [1 ,2 ,3 ]
Huang, Yulei [1 ,2 ,3 ]
Zhao, Dafa [4 ,5 ]
Xue, Shunzhong [4 ,5 ]
Nie, Xinfang [1 ,2 ,3 ]
Li, Jun [1 ,2 ,3 ]
Lu, Dawei [1 ,2 ,3 ]
Xin, Tao [1 ,2 ,3 ]
机构
[1] Southern Univ Sci & Technol, Shenzhen Inst Quantum Sci & Engn, Shenzhen 518055, Peoples R China
[2] Southern Univ Sci & Technol, Dept Phys, Shenzhen 518055, Peoples R China
[3] Southern Univ Sci & Technol, Guangdong Prov Key Lab Quantum Sci & Engn, Shenzhen 518055, Peoples R China
[4] Tsinghua Univ, State Key Lab Low Dimens Quantum Phys, Beijing 100084, Peoples R China
[5] Tsinghua Univ, Dept Phys, Beijing 100084, Peoples R China
来源
PHYSICAL REVIEW RESEARCH | 2021年 / 3卷 / 02期
基金
中国国家自然科学基金;
关键词
PHASE-TRANSITIONS;
D O I
10.1103/PhysRevResearch.3.023246
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In the Hamiltonian-based quantum dynamics, to estimate Hamiltonians from the measured data is a vital topic. In this work, we propose a recurrent neural network to learn the target Hamiltonians from the temporal records of single-qubit measurements, which does not require the ground states and only measures single-qubit observables. It is applicable on both time-independent and time-dependent Hamiltonians and can simultaneously capture the magnitude and sign of Hamiltonian parameters. Taking the Hamiltonians with the nearest-neighbor interactions as numerical examples, we trained our recurrent neural networks to learn different types of Hamiltonians with high accuracy. The study also shows that our method has good robustness against the measurement noise and decoherence effect. Therefore, it has widespread applications in estimating the parameters of quantum devices and characterizing the Hamiltonian-based quantum dynamics.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Signatures of quantum behavior in single-qubit weak measurements
    Ruskov, Rusko
    Korotkov, Alexander N.
    Mizel, Ari
    [J]. PHYSICAL REVIEW LETTERS, 2006, 96 (20)
  • [2] Learning quantum phases via single-qubit disentanglement
    An, Zheng
    Cao, Chenfeng
    Xu, Cheng-Qian
    Zhou, D. L.
    [J]. QUANTUM, 2024, 8
  • [3] Learning the tensor network model of a quantum state using a few single-qubit measurements
    Kuzmin, Sergei
    Mikhailova, Varvara
    Dyakonov, Ivan
    Straupe, Stanislav
    [J]. PHYSICAL REVIEW A, 2024, 109 (05)
  • [4] Quantum circuits for single-qubit measurements corresponding to platonic solids
    Decker, T
    Janzing, D
    Beth, T
    [J]. INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2004, 2 (03) : 353 - 377
  • [5] Practical Approximation of Single-Qubit Unitaries by Single-Qubit Quantum Clifford and T Circuits
    Kliuchnikov, Vadym
    Maslov, Dmitri
    Mosca, Michele
    [J]. IEEE TRANSACTIONS ON COMPUTERS, 2016, 65 (01) : 161 - 172
  • [6] Quantum thermometry by single-qubit dephasing
    Sholeh Razavian
    Claudia Benedetti
    Matteo Bina
    Yahya Akbari-Kourbolagh
    Matteo G. A. Paris
    [J]. The European Physical Journal Plus, 134
  • [7] Quantum proofs can be verified using only single-qubit measurements
    Morimae, Tomoyuki
    Nagaj, Daniel
    Schuch, Norbert
    [J]. PHYSICAL REVIEW A, 2016, 93 (02)
  • [8] Single-qubit gates and measurements in the surface acoustic wave quantum computer
    Furuta, S
    Barnes, CHW
    Doran, CJL
    [J]. PHYSICAL REVIEW B, 2004, 70 (20): : 205320 - 1
  • [9] Quantum thermometry by single-qubit dephasing
    Razavian, Sholeh
    Benedetti, Claudia
    Bina, Matteo
    Akbari-Kourbolagh, Yahya
    Paris, Matteo G. A.
    [J]. EUROPEAN PHYSICAL JOURNAL PLUS, 2019, 134 (06):
  • [10] Single-qubit optical quantum fingerprinting
    Horn, RT
    Babichev, SA
    Marzlin, KP
    Lvovsky, AI
    Sanders, BC
    [J]. PHYSICAL REVIEW LETTERS, 2005, 95 (15)