Efficient extraction of quantum Hamiltonians from optimal laboratory data

被引:8
|
作者
Geremia, JM [1 ]
Rabitz, HA
机构
[1] CALTECH, Pasadena, CA 91125 USA
[2] Princeton Univ, Dept Chem, Princeton, NJ 08540 USA
来源
PHYSICAL REVIEW A | 2004年 / 70卷 / 02期
关键词
D O I
10.1103/PhysRevA.70.023804
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Optimal identification (OI) is a recently developed procedure for extracting information about quantum Hamiltonians from experimental data. It employs techniques from coherent learning control to drive the quantum system such that dynamical measurements provide maximal information about its Hamiltonian. OI is an optimal procedure as initially presented; however, the data inversion component is computationally expensive. Here, we demonstrate that highly efficient global, nonlinear, map-facilitated inversion procedures can be combined with the OI concept to make it more suitable for laboratory implementation. A simulation of map-facilitated OI illustrates how the input-output maps can greatly accelerate the data inversion process.
引用
收藏
页码:023804 / 1
页数:6
相关论文
共 50 条
  • [1] Efficient algorithms for the laboratory discovery of optimal quantum controls
    Turinici, G
    Le Bris, C
    Rabitz, H
    PHYSICAL REVIEW E, 2004, 70 (01):
  • [2] Efficient quantum algorithms for simulating sparse Hamiltonians
    Berry, Dominic W.
    Ahokas, Graeme
    Cleve, Richard
    Sanders, Barry C.
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2007, 270 (02) : 359 - 371
  • [3] Efficient Quantum Algorithms for Simulating Sparse Hamiltonians
    Dominic W. Berry
    Graeme Ahokas
    Richard Cleve
    Barry C. Sanders
    Communications in Mathematical Physics, 2007, 270 : 359 - 371
  • [4] Optimal learning of quantum Hamiltonians from high-temperature Gibbs states
    Haah, Jeongwan
    Kothari, Robin
    Tang, Ewin
    2022 IEEE 63RD ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE (FOCS), 2022, : 135 - 146
  • [5] Reconstruction of the hamiltonians of nonrigid molecules from quantum-chemical data
    Benderskii, VA
    Vetoshkin, EV
    Trommsdorff, HP
    RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY, 2000, 74 (03): : 351 - 356
  • [6] Deep learning Hamiltonians from disordered image data in quantum materials
    Basak, S.
    Banguero, M. Alzate
    Burzawa, L.
    Simmons, F.
    Salev, P.
    Aigouy, L.
    Qazilbash, M. M.
    Schuller, I. K.
    Basov, D. N.
    Zimmers, A.
    Carlson, E. W.
    PHYSICAL REVIEW B, 2023, 107 (20)
  • [7] OPTIMAL EXTRACTION OF INFORMATION FROM FINITE QUANTUM ENSEMBLES
    MASSAR, S
    POPESCU, S
    PHYSICAL REVIEW LETTERS, 1995, 74 (08) : 1259 - 1263
  • [8] An efficient laboratory extraction apparatus
    Oppen, FC
    INDUSTRIAL AND ENGINEERING CHEMISTRY-ANALYTICAL EDITION, 1936, 8 : 110 - 111
  • [9] Efficient quantum simulation of open quantum dynamics at various Hamiltonians and spectral densities
    Zhang, Na-Na
    Tao, Ming-Jie
    He, Wan-Ting
    Chen, Xin-Yu
    Kong, Xiang-Yu
    Deng, Fu-Guo
    Lambert, Neill
    Ai, Qing
    FRONTIERS OF PHYSICS, 2021, 16 (05)
  • [10] Efficient quantum simulation of open quantum dynamics at various Hamiltonians and spectral densities
    Na-Na Zhang
    Ming-Jie Tao
    Wan-Ting He
    Xin-Yu Chen
    Xiang-Yu Kong
    Fu-Guo Deng
    Neill Lambert
    Qing Ai
    Frontiers of Physics, 2021, 16