Efficient Quantum Algorithms for Simulating Sparse Hamiltonians

被引:0
|
作者
Dominic W. Berry
Graeme Ahokas
Richard Cleve
Barry C. Sanders
机构
[1] The University of Queensland,Department of Physics
[2] University of Calgary,Institute for Quantum Information Science
[3] University of Calgary,Department of Computer Science
[4] University of Waterloo,School of Computer Science
[5] University of Waterloo,Institute for Quantum Computing
[6] Macquarie University,Centre for Quantum Computer Technology
来源
关键词
Quantum Algorithm; Quantum Walk; Trace Distance; Nonzero Matrix Element; Tensor Product Structure;
D O I
暂无
中图分类号
学科分类号
摘要
We present an efficient quantum algorithm for simulating the evolution of a quantum state for a sparse Hamiltonian H over a given time t in terms of a procedure for computing the matrix entries of H. In particular, when H acts on n qubits, has at most a constant number of nonzero entries in each row/column, and ||H|| is bounded by a constant, we may select any positive integer k such that the simulation requires O((log*n)t1+1/2k) accesses to matrix entries of H. We also show that the temporal scaling cannot be significantly improved beyond this, because sublinear time scaling is not possible.
引用
收藏
页码:359 / 371
页数:12
相关论文
共 50 条
  • [1] Efficient quantum algorithms for simulating sparse Hamiltonians
    Berry, Dominic W.
    Ahokas, Graeme
    Cleve, Richard
    Sanders, Barry C.
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2007, 270 (02) : 359 - 371
  • [2] A QUANTUM ALGORITHM FOR SIMULATING NON-SPARSE HAMILTONIANS
    Wang, Chunhao
    Wossnig, Leonard
    QUANTUM INFORMATION & COMPUTATION, 2020, 20 (7-8) : 597 - 615
  • [3] A quantum algorithm for simulating non-sparse hamiltonians
    Wang, Chunhao
    Wossnig, Leonard
    1600, Rinton Press Inc. (20): : 7 - 8
  • [4] Simulating Sparse Hamiltonians with Star Decompositions
    Childs, Andrew M.
    Kothari, Robin
    THEORY OF QUANTUM COMPUTATION, COMMUNICATION, AND CRYPTOGRAPHY, 2011, 6519 : 94 - +
  • [5] Variational quantum algorithms for Poisson equations based on the decomposition of sparse Hamiltonians
    Li H.-M.
    Wang Z.-X.
    Fei S.-M.
    Physical Review A, 2023, 108 (03)
  • [6] EXPONENTIAL IMPROVEMENT IN PRECISION FOR SIMULATING SPARSE HAMILTONIANS
    Berry, Dominic W.
    Childs, Andrew M.
    Cleve, Richard
    Kothari, Robin
    Somma, Rolando D.
    FORUM OF MATHEMATICS SIGMA, 2017, 5
  • [7] Exponential improvement in precision for simulating sparse Hamiltonians
    Berry, Dominic W.
    Childs, Andrew M.
    Cleve, Richard
    Kothari, Robin
    Somma, Rolando D.
    STOC'14: PROCEEDINGS OF THE 46TH ANNUAL 2014 ACM SYMPOSIUM ON THEORY OF COMPUTING, 2014, : 283 - 292
  • [8] Efficient classical algorithms for simulating symmetric quantum systems
    Anschuetz, Eric R.
    Bauer, Andreas
    Kiani, Bobak T.
    Lloyd, Seth
    QUANTUM, 2023, 7
  • [9] Variational Quantum Eigensolvers for Sparse Hamiltonians
    Kirby, William M.
    Love, Peter J.
    PHYSICAL REVIEW LETTERS, 2021, 127 (11)
  • [10] EFFICIENT QUANTUM ALGORITHMS FOR ANALYZING LARGE SPARSE ELECTRICAL NETWORKS
    Wang, Guoming
    QUANTUM INFORMATION & COMPUTATION, 2017, 17 (11-12) : 987 - 1026