Efficient Quantum Algorithms for Simulating Sparse Hamiltonians

被引:0
|
作者
Dominic W. Berry
Graeme Ahokas
Richard Cleve
Barry C. Sanders
机构
[1] The University of Queensland,Department of Physics
[2] University of Calgary,Institute for Quantum Information Science
[3] University of Calgary,Department of Computer Science
[4] University of Waterloo,School of Computer Science
[5] University of Waterloo,Institute for Quantum Computing
[6] Macquarie University,Centre for Quantum Computer Technology
来源
关键词
Quantum Algorithm; Quantum Walk; Trace Distance; Nonzero Matrix Element; Tensor Product Structure;
D O I
暂无
中图分类号
学科分类号
摘要
We present an efficient quantum algorithm for simulating the evolution of a quantum state for a sparse Hamiltonian H over a given time t in terms of a procedure for computing the matrix entries of H. In particular, when H acts on n qubits, has at most a constant number of nonzero entries in each row/column, and ||H|| is bounded by a constant, we may select any positive integer k such that the simulation requires O((log*n)t1+1/2k) accesses to matrix entries of H. We also show that the temporal scaling cannot be significantly improved beyond this, because sublinear time scaling is not possible.
引用
收藏
页码:359 / 371
页数:12
相关论文
共 50 条
  • [31] Optimizing sparse fermionic Hamiltonians
    Herasymenko, Yaroslav
    Stroeks, Maarten
    Helsen, Jonas
    Terhal, Barbara
    QUANTUM, 2023, 7
  • [32] Solving the sparse QUBO on multiple GPUs for Simulating a Quantum Annealer
    Imanaga, Tomohiro
    Nakano, Koji
    Yasudo, Ryota
    Ito, Yasuaki
    Kawamata, Yuya
    Katsuki, Ryota
    Ozaki, Shiro
    Yazane, Takashi
    Hamano, Kenichiro
    2021 NINTH INTERNATIONAL SYMPOSIUM ON COMPUTING AND NETWORKING (CANDAR 2021), 2021, : 19 - 28
  • [33] Simulating Noisy Variational Quantum Algorithms: A Polynomial Approach
    Shao, Yuguo
    Wei, Fuchuan
    Cheng, Song
    Liu, Zhengwei
    PHYSICAL REVIEW LETTERS, 2024, 133 (12)
  • [34] Holographic quantum algorithms for simulating correlated spin systems
    Foss-Feig, Michael
    Hayes, David
    Dreiling, Joan M.
    Figgatt, Caroline
    Gaebler, John P.
    Moses, Steven A.
    Pino, Juan M.
    Potter, Andrew C.
    PHYSICAL REVIEW RESEARCH, 2021, 3 (03):
  • [35] Efficient external memory algorithms by simulating coarse-grained parallel algorithms
    Dehne, F
    Dittrich, W
    Hutchinson, D
    ALGORITHMICA, 2003, 36 (02) : 97 - 122
  • [36] Sparse Reconstruction for Radar Imaging Based on Quantum Algorithms
    Liu, Xiaowen
    Dong, Chen
    Luo, Ying
    Kang, Le
    Liu, Yong
    Zhang, Qun
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [38] Efficient Block Algorithms for Parallel Sparse Triangular Solve
    Lu, Zhengyang
    Niu, Yuyao
    Liu, Weifeng
    PROCEEDINGS OF THE 49TH INTERNATIONAL CONFERENCE ON PARALLEL PROCESSING, ICPP 2020, 2020,
  • [39] Efficient ordering algorithms for sparse matrix/vector methods
    Gooi, H.B.
    Wang, Y.Q.
    International Journal of Electrical Power and Energy System, 1998, 20 (01): : 53 - 59
  • [40] I/O-efficient algorithms for sparse graphs
    Toma, L
    Zeh, N
    ALGORITHMS FOR MEMORY HIERARCHIES: ADVANCED LECTURES, 2003, 2625 : 85 - 109