Simulation of electroosmosis using a meshless Finite Point Method

被引:0
|
作者
Mitchell, MJ [1 ]
Aluru, NR [1 ]
机构
[1] Univ Illinois, Beckman Inst 3263, Urbana, IL 61801 USA
关键词
meshless methods; electroosmosis; MEMS;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A Finite Point Method (FPM) based on a weighted least squares interpolation is presented for the simulation of electroosmotic transport in capillaries. This method requires no mesh and involves no Galerkin-type integration, making it more computationally efficient than the traditional finite element method. The FPM has been employed to solve the non-linear Poisson-Boltzmann equation for charge distribution, the Laplace equation for applied potential, and the Stokes equations for fluidic transport. These equations govern electroosmotic transport, the phenomenon used to drive fluid through electrophoretic separation systems.
引用
收藏
页码:522 / 525
页数:4
相关论文
共 50 条
  • [41] Numerical simulation of aneurysms with Finite Element and Meshless Methods
    Silva, J. L.
    Belinha, J.
    Neves, J. M. P. R.
    Vilaca, I. R. S. B. S.
    Natal Jorge, R. M.
    2019 6TH IEEE PORTUGUESE MEETING IN BIOENGINEERING (ENBENG), 2019,
  • [42] Orthogonal meshless finite volume method in elastodynamics
    Moosavi, M. R.
    Delfanian, F.
    Khelil, A.
    Rabczuk, T.
    THIN-WALLED STRUCTURES, 2011, 49 (09) : 1171 - 1177
  • [43] Improvements to the meshless generalized finite difference method
    Kamyabi, Ata
    Kermani, Vahid
    Kamyabi, Mohammadmandi
    ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2019, 99 : 233 - 243
  • [45] Finite deformation elasto-plastic modelling using an adaptive meshless method
    Ullah, Z.
    Augarde, C. E.
    COMPUTERS & STRUCTURES, 2013, 118 : 39 - 52
  • [46] Geometrically Nonlinear Analysis for Elastic Beam Using Point Interpolation Meshless Method
    He, Cheng
    Wu, Xinhai
    Wang, Tao
    He, Huan
    SHOCK AND VIBRATION, 2019, 2019
  • [47] Beyond finite elements: A comprehensive, patient-specific neurosurgical simulation utilizing a meshless method
    Miller, K.
    Horton, A.
    Joldes, G. R.
    Wittek, A.
    JOURNAL OF BIOMECHANICS, 2012, 45 (15) : 2698 - 2701
  • [48] Meshless Generalized Finite Difference Method Based on Nonlocal Differential Operators for Numerical Simulation of Elastostatics
    Zhou, Yeying
    Li, Chunguang
    Zhuang, Xinshan
    Wang, Zhifen
    MATHEMATICS, 2024, 12 (09)
  • [49] Numerical simulation of nonlinear coupled Burgers' equation through meshless radial point interpolation method
    Jafarabadi, Ahmad
    Shivanian, Elyas
    ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2018, 95 : 187 - 199
  • [50] A COMPARISON OF THE EFFECTIVENESS OF USING THE MESHLESS METHOD AND THE FINITE DIFFERENCE METHOD IN GEOSTATISTICAL ANALYSIS OF TRANSPORT MODELING
    Vrankar, Leopold
    Turk, Goran
    Runovc, Franc
    INTERNATIONAL JOURNAL OF COMPUTATIONAL METHODS, 2005, 2 (02) : 149 - 166