Simulation of electroosmosis using a meshless Finite Point Method

被引:0
|
作者
Mitchell, MJ [1 ]
Aluru, NR [1 ]
机构
[1] Univ Illinois, Beckman Inst 3263, Urbana, IL 61801 USA
关键词
meshless methods; electroosmosis; MEMS;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A Finite Point Method (FPM) based on a weighted least squares interpolation is presented for the simulation of electroosmotic transport in capillaries. This method requires no mesh and involves no Galerkin-type integration, making it more computationally efficient than the traditional finite element method. The FPM has been employed to solve the non-linear Poisson-Boltzmann equation for charge distribution, the Laplace equation for applied potential, and the Stokes equations for fluidic transport. These equations govern electroosmotic transport, the phenomenon used to drive fluid through electrophoretic separation systems.
引用
收藏
页码:522 / 525
页数:4
相关论文
共 50 条
  • [21] Simulation of coupled flow and contaminant transport in an unconfined aquifer using the local radial point interpolation meshless method
    Swetha, K.
    Eldho, T. I.
    Singh, L. Guneshwor
    Kumar, A. Vinod
    HYDROGEOLOGY JOURNAL, 2023, 31 (02) : 485 - 500
  • [22] A Forging Simulation by Using the Point Collocation Method with a Boundary Layer of Finite Element
    Guo, Yong-Ming
    Advanced Manufacture: Focusing on New and Emerging Technologies, 2008, 594 : 45 - 50
  • [23] MESHLESS FINITE VOLUME METHOD WITH SMOOTHING
    Huang, Zhecong
    Zheng, Hong
    Dai, Feng
    INTERNATIONAL JOURNAL OF COMPUTATIONAL METHODS, 2014, 11 (06)
  • [24] Computational simulation of the vestibular system using a meshless particle method
    Santos, C. F.
    Parente, Marco
    Belinha, J.
    Natal Jorge, R. M.
    Gentil, Fernanda
    BIODENTAL ENGINEERING V, 2019, : 129 - 134
  • [25] A meshless finite point method for the improved Boussinesq equation using stabilized moving least squares approximation and Richardson extrapolation
    Li, Xiaolin
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2023, 39 (04) : 2739 - 2762
  • [26] The numerical simulation of crack propagation using radial point interpolation meshless methods
    Ramalho, L. D. C.
    Belinha, J.
    Campilho, R. D. S. G.
    ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2019, 109 : 187 - 198
  • [27] Simulation of incompressible flows around moving bodies using meshless finite differencing
    Chew, Choon Seng
    Seng, Yeo Khoon
    Chang, Shu
    JOURNAL OF COMPUTATIONAL METHODS IN SCIENCES AND ENGINEERING, 2006, 6 (5-6) : 293 - 313
  • [28] Numerical analysis of nonlinear Klein-Gordon equations by a meshless superconvergent finite point method
    Hou, Huanyang
    Li, Xiaolin
    ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2024, 169
  • [29] Computer simulation of single-point diamond turning using finite element method
    Wu, HY
    Lee, WB
    Cheung, CF
    To, S
    Chen, YP
    JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2005, 167 (2-3) : 549 - 554
  • [30] A coupled meshless finite point/Peridynamic method for 2D dynamic fracture analysis
    Shojaei, A.
    Mudric, T.
    Zaccariotto, M.
    Galvanetto, U.
    INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 2016, 119 : 419 - 431