Hadamard Type Inequalities for m-convex and (α, m)-convex Functions via Fractional Integrals

被引:0
|
作者
Ardic, Merve Avci [1 ]
Ekinci, Alper [2 ]
Akdemir, Ahmet Ocak [2 ]
Ozdemir, M. Emin [3 ]
机构
[1] Adiyaman Univ, Fac Sci & Arts, Dept Math, TR-02040 Adiyaman, Turkey
[2] Ibrahim Cecen Univ Agri, Fac Sci & Arts, Dept Math, TR-04100 Agri, Turkey
[3] Uludag Univ, Educ Fac, Bursa, Turkey
关键词
D O I
10.1063/1.5020455
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we established some new Hadamard-type integral inequalities for functions whose derivatives of absolute values are m-convex and (alpha, m) convex functions via Riemann-Liouville fractional integrals.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Jensen-type inequalities for m-convex functions
    Bosch, Paul
    Quintana, Yamilet
    Rodriguez, Jose M.
    Sigarreta, Jose M.
    [J]. OPEN MATHEMATICS, 2022, 20 (01): : 946 - 958
  • [22] Some Hermite-Hadamard type inequalities for (P, m)-function and quasi m-convex functions
    Kadakal, Mahir
    [J]. INTERNATIONAL JOURNAL OF OPTIMIZATION AND CONTROL-THEORIES & APPLICATIONS-IJOCTA, 2020, 10 (01): : 78 - 84
  • [23] Hermite-Hadamard type inequalities for harmonically convex functions via fractional integrals
    Iscan, Imdat
    Wu, Shanhe
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2014, 238 : 237 - 244
  • [24] Hermite-Hadamard-Fejer type inequalities for convex functions via fractional integrals
    Iscan, Imdat
    [J]. STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2015, 60 (03): : 355 - 366
  • [25] Hadamard Inequalities for Strongly (α, m)-Convex Functions via Caputo Fractional Derivatives
    Dong, Yanliang
    Zeb, Muhammad
    Farid, Ghulam
    Bibi, Sidra
    [J]. JOURNAL OF MATHEMATICS, 2021, 2021
  • [26] On the Fractional Hermite-Hadamard Type Inequalities for (α, m)-Logarithmically Convex Functions
    Wang, JinRong
    Liao, Yumei
    Deng, JianHua
    [J]. FILOMAT, 2015, 29 (07) : 1565 - 1580
  • [27] A Note on Hermite-Hadamard-Fejer Type Inequalities for Functions Whose n-th Derivatives Are m-Convex or (a,m)-Convex Functions
    Kovac, Sanja
    [J]. AXIOMS, 2022, 11 (01)
  • [28] Hadamard and Fejér–Hadamard type inequalities for harmonically convex functions via generalized fractional integrals
    Abbas G.
    Farid G.
    [J]. The Journal of Analysis, 2017, 25 (1) : 107 - 119
  • [29] m-GEOMETRICALLY CONVEX FUNCTIONS AND HADAMARD TYPE INEQUALITIES VIA RIEMANN-LIOUVILLE INTEGRALS
    Akdemir, Ahmet Ocak
    Set, Erhan
    Ozdemir, M. Emin
    [J]. PROCEEDINGS OF THE7TH INTERNATIONAL CONFERENCE ON CONTROL AND OPTIMIZATION WITH INDUSTRIAL APPLICATIONS, VOL. 1, 2020, : 56 - 58
  • [30] Fractional inequalities of the Hermite-Hadamard type for m-polynomial convex and harmonically convex functions
    Nwaeze, Eze R.
    Khan, Muhammad Adil
    Ahmadian, Ali
    Ahmad, Mohammad Nazir
    Mahmood, Ahmad Kamil
    [J]. AIMS MATHEMATICS, 2021, 6 (02): : 1889 - 1904