Deep learning based fast and fully-automated segmentation on abdominal multiple organs from CT

被引:1
|
作者
Kim, Jieun [1 ]
Lee, June-Goo [1 ,2 ]
机构
[1] Univ Ulsan, Dept Convergence Med, Coll Med, Olymp Ro 3 Gil, Seoul 05505, South Korea
[2] Asan Med Ctr, Biomed Engn Res Ctr, Asan Inst Life Sci, Olymp Ro 3 Gil, Seoul 05505, South Korea
关键词
multiple organ segmentation; multi-organ segmentation; MPR based segmentation;
D O I
10.1117/12.2521689
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Effective segmentation of abdominal organs on CT images is necessary not only in the quantitative analysis but also in the dose simulation of radiational oncology. However, the manual or semi-automatic segmentation is tedious and subject to inter- and intra-observer variances. To overcome these shortcomings, the development of a fully automatic segmentation is required. In this paper, we propose the deep learning based fully-automated method to segment multiple organs from abdominal CT images and evaluate its performance on clinical dataset. Total 120 cases were used for training and testing. The DSC values in 20 test dataset were 0.945 +/- 0.016, 0.836 +/- 0.084, 0.912 +/- 0.052 and 0.886 +/- 0.068 for the liver, stomach, right and left kidney, respectively.
引用
收藏
页数:5
相关论文
共 50 条
  • [21] Fully automated deep-learning section-based muscle segmentation from CT images for sarcopenia assessment
    Islam, S.
    Kanavati, F.
    Arain, Z.
    Da Costa, O. Fadeeva
    Crum, W.
    Aboagye, E. O.
    Rockall, A. G.
    CLINICAL RADIOLOGY, 2022, 77 (05) : E363 - E371
  • [22] A fully-automated paper ECG digitisation algorithm using deep learning
    Wu, Huiyi
    Patel, Kiran Haresh Kumar
    Li, Xinyang
    Zhang, Bowen
    Galazis, Christoforos
    Bajaj, Nikesh
    Sau, Arunashis
    Shi, Xili
    Sun, Lin
    Tao, Yanda
    Al-Qaysi, Harith
    Tarusan, Lawrence
    Yasmin, Najira
    Grewal, Natasha
    Kapoor, Gaurika
    Waks, Jonathan W.
    Kramer, Daniel B.
    Peters, Nicholas S.
    Ng, Fu Siong
    SCIENTIFIC REPORTS, 2022, 12 (01)
  • [23] Deep learning for fully-automated nuclear pleomorphism scoring in breast cancer
    Caner Mercan
    Maschenka Balkenhol
    Roberto Salgado
    Mark Sherman
    Philippe Vielh
    Willem Vreuls
    António Polónia
    Hugo M. Horlings
    Wilko Weichert
    Jodi M. Carter
    Peter Bult
    Matthias Christgen
    Carsten Denkert
    Koen van de Vijver
    John-Melle Bokhorst
    Jeroen van der Laak
    Francesco Ciompi
    npj Breast Cancer, 8
  • [24] A fully-automated paper ECG digitisation algorithm using deep learning
    Huiyi Wu
    Kiran Haresh Kumar Patel
    Xinyang Li
    Bowen Zhang
    Christoforos Galazis
    Nikesh Bajaj
    Arunashis Sau
    Xili Shi
    Lin Sun
    Yanda Tao
    Harith Al-Qaysi
    Lawrence Tarusan
    Najira Yasmin
    Natasha Grewal
    Gaurika Kapoor
    Jonathan W. Waks
    Daniel B. Kramer
    Nicholas S. Peters
    Fu Siong Ng
    Scientific Reports, 12
  • [25] Deep learning for fully-automated nuclear pleomorphism scoring in breast cancer
    Mercan, Caner
    Balkenhol, Maschenka
    Salgado, Roberto
    Sherman, Mark
    Vielh, Philippe
    Vreuls, Willem
    Polonia, Antonio
    Horlings, Hugo M.
    Weichert, Wilko
    Carter, Jodi M.
    Bult, Peter
    Christgen, Matthias
    Denkert, Carsten
    van de Vijver, Koen
    Bokhorst, John-Melle
    van der Laak, Jeroen
    Ciompi, Francesco
    NPJ BREAST CANCER, 2022, 8 (01)
  • [26] Deep learning-based, fully automated, pediatric brain segmentation
    Kim, Min-Jee
    Hong, Eunpyeong
    Yum, Mi-Sun
    Lee, Yun-Jeong
    Kim, Jinyoung
    Ko, Tae-Sung
    SCIENTIFIC REPORTS, 2024, 14 (01)
  • [27] Fully Automated Abdominal CT Biomarkers for Type 2 Diabetes Using Deep Learning
    Tallam, Hima
    Elton, Daniel C.
    Lee, Sungwon
    Wakim, Paul
    Pickhardt, Perry J.
    Summers, Ronald M.
    RADIOLOGY, 2022, 304 (01) : 85 - 95
  • [28] Fully-automated Segmentation of Muscle Measurement on CT in Detecting Central Sarcopenia: A Trend of Standardization
    Dong, Qian
    ACADEMIC RADIOLOGY, 2020, 27 (03) : 321 - 322
  • [29] FatSegNet: A fully automated deep learning pipeline for adipose tissue segmentation on abdominal dixon MRI
    Estrada, Santiago
    Lu, Ran
    Conjeti, Sailesh
    Orozco-Ruiz, Ximena
    Panos-Willuhn, Joana
    Breteler, Monique M. B.
    Reuter, Martin
    MAGNETIC RESONANCE IN MEDICINE, 2020, 83 (04) : 1471 - 1483
  • [30] Automated Abdominal Segmentation of CT Scans for Body Composition Analysis Using Deep Learning
    Weston, Alexander D.
    Korfiatis, Panagiotis
    Kline, Timothy L.
    Philbrick, Kenneth A.
    Kostandy, Petro
    Sakinis, Tomas
    Sugimoto, Motokazu
    Takahashi, Naoki
    Erickson, Bradley J.
    RADIOLOGY, 2019, 290 (03) : 669 - 679