Deep learning for fully-automated nuclear pleomorphism scoring in breast cancer

被引:8
|
作者
Mercan, Caner [1 ]
Balkenhol, Maschenka [1 ]
Salgado, Roberto [2 ,3 ]
Sherman, Mark [4 ]
Vielh, Philippe [5 ]
Vreuls, Willem [6 ]
Polonia, Antonio [7 ]
Horlings, Hugo M. [8 ]
Weichert, Wilko [9 ]
Carter, Jodi M. [10 ]
Bult, Peter [1 ]
Christgen, Matthias [11 ]
Denkert, Carsten [12 ]
van de Vijver, Koen [13 ,14 ]
Bokhorst, John-Melle [1 ]
van der Laak, Jeroen [1 ,15 ]
Ciompi, Francesco [1 ]
机构
[1] Radboud Univ Nijmegen, Med Ctr, Dept Pathol, Nijmegen, Netherlands
[2] GZA ZNA Hosp, Dept Pathol, Antwerp, Belgium
[3] Peter Mac Callum Canc Ctr, Div Res, Melbourne, Vic, Australia
[4] Mayo Clin, Dept Lab Med & Pathol, Rochester, MN USA
[5] Medipath & Amer Hosp Paris, Paris, France
[6] Canisius Wilhelmina Ziekenhuis, Nijmegen, Netherlands
[7] Univ Porto, Inst Mol Pathol & Immunol, Dept Pathol, Ipatimup Diagnost, Porto, Portugal
[8] Netherlands Canc Inst, Dept Mol Pathol, Amsterdam, Netherlands
[9] Tech Univ Munich, Inst Pathol, Munich, Germany
[10] Univ Alberta, Dept Lab Med & Pathol, Edmonton, AB, Canada
[11] Hannover Med Sch, Inst Pathol, Hannover, Germany
[12] Philipps Univ Marburg, Inst Pathol, Marburg, Germany
[13] Ghent Univ Hosp, Ghent, Belgium
[14] Canc Res Inst Ghent, Dept Pathol, Ghent, Belgium
[15] Linkoping Univ, Ctr Med Image Sci & Visualizat, Linkoping, Sweden
关键词
REPRODUCIBILITY; CARCINOMA; ATYPIA; SYSTEM; BLOOM; GRADE;
D O I
10.1038/s41523-022-00488-w
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
To guide the choice of treatment, every new breast cancer is assessed for aggressiveness (i.e., graded) by an experienced histopathologist. Typically, this tumor grade consists of three components, one of which is the nuclear pleomorphism score (the extent of abnormalities in the overall appearance of tumor nuclei). The degree of nuclear pleomorphism is subjectively classified from 1 to 3, where a score of 1 most closely resembles epithelial cells of normal breast epithelium and 3 shows the greatest abnormalities. Establishing numerical criteria for grading nuclear pleomorphism is challenging, and inter-observer agreement is poor. Therefore, we studied the use of deep learning to develop fully automated nuclear pleomorphism scoring in breast cancer. The reference standard used for training the algorithm consisted of the collective knowledge of an international panel of 10 pathologists on a curated set of regions of interest covering the entire spectrum of tumor morphology in breast cancer. To fully exploit the information provided by the pathologists, a first-of-its-kind deep regression model was trained to yield a continuous scoring rather than limiting the pleomorphism scoring to the standard three-tiered system. Our approach preserves the continuum of nuclear pleomorphism without necessitating a large data set with explicit annotations of tumor nuclei. Once translated to the traditional system, our approach achieves top pathologist-level performance in multiple experiments on regions of interest and whole-slide images, compared to a panel of 10 and 4 pathologists, respectively.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Deep learning for fully-automated nuclear pleomorphism scoring in breast cancer
    Caner Mercan
    Maschenka Balkenhol
    Roberto Salgado
    Mark Sherman
    Philippe Vielh
    Willem Vreuls
    António Polónia
    Hugo M. Horlings
    Wilko Weichert
    Jodi M. Carter
    Peter Bult
    Matthias Christgen
    Carsten Denkert
    Koen van de Vijver
    John-Melle Bokhorst
    Jeroen van der Laak
    Francesco Ciompi
    [J]. npj Breast Cancer, 8
  • [2] Scoring nuclear pleomorphism in breast cancer
    Dunne, B
    Going, JJ
    [J]. HISTOPATHOLOGY, 2001, 39 (03) : 259 - 265
  • [3] Batch Mode Active Learning on the Riemannian Manifold for Automated Scoring of Nuclear Pleomorphism in Breast Cancer
    Das, Asha
    Nair, Madhu S.
    Peter, David S.
    [J]. ARTIFICIAL INTELLIGENCE IN MEDICINE, 2020, 103
  • [4] A fully-automated deep learning pipeline for cervical cancer classification
    Alyafeai, Zaid
    Ghouti, Lahouari
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2020, 141
  • [5] Grading nuclear pleomorphism in breast cancer using deep learning
    Mercan, C.
    Balkenhol, M.
    van der Laak, J.
    Ciompi, F.
    [J]. VIRCHOWS ARCHIV, 2020, 477 : S37 - S37
  • [6] Fully-automated deep learning pipeline for segmentation and classification of breast ultrasound images
    Podda, Alessandro Sebastian
    Balia, Riccardo
    Barra, Silvio
    Carta, Salvatore
    Fenu, Gianni
    Piano, Leonardo
    [J]. JOURNAL OF COMPUTATIONAL SCIENCE, 2022, 63
  • [7] Deep Learning for Fully-Automated Localization and Segmentation of Rectal Cancer on Multiparametric MR
    Trebeschi, Stefano
    van Griethuysen, Joost J. M.
    Lambregts, Doenja M. J.
    Lahaye, Max J.
    Parmer, Chintan
    Bakers, Frans C. H.
    Peters, Nicky H. G. M.
    Beets-Tan, Regina G. H.
    Aerts, Hugo J. W. L.
    [J]. SCIENTIFIC REPORTS, 2017, 7
  • [8] Deep Learning for Fully-Automated Localization and Segmentation of Rectal Cancer on Multiparametric MR
    Stefano Trebeschi
    Joost J. M. van Griethuysen
    Doenja M. J. Lambregts
    Max J. Lahaye
    Chintan Parmar
    Frans C. H. Bakers
    Nicky H. G. M. Peters
    Regina G. H. Beets-Tan
    Hugo J. W. L. Aerts
    [J]. Scientific Reports, 7
  • [9] A Quantitative Measurement Method for Nuclear-Pleomorphism Scoring in Breast Cancer
    Teoh, Chai Ling
    Tan, Xiao Jian
    Ab Rahman, Khairul Shakir
    Bakrin, Ikmal Hisyam
    Goh, Kam Meng
    Siet, Joseph Jiun Wen
    Wan Muhamad, Wan Zuki Azman
    [J]. DIAGNOSTICS, 2024, 14 (18)
  • [10] A fully-automated paper ECG digitisation algorithm using deep learning
    Wu, Huiyi
    Patel, Kiran Haresh Kumar
    Li, Xinyang
    Zhang, Bowen
    Galazis, Christoforos
    Bajaj, Nikesh
    Sau, Arunashis
    Shi, Xili
    Sun, Lin
    Tao, Yanda
    Al-Qaysi, Harith
    Tarusan, Lawrence
    Yasmin, Najira
    Grewal, Natasha
    Kapoor, Gaurika
    Waks, Jonathan W.
    Kramer, Daniel B.
    Peters, Nicholas S.
    Ng, Fu Siong
    [J]. SCIENTIFIC REPORTS, 2022, 12 (01)