Robust spherical parameterization of triangular meshes

被引:24
|
作者
Sheffer, A
Gotsman, C
Dyn, N
机构
[1] Univ British Columbia, Dept Comp Sci, Vancouver, BC V6T 1Z4, Canada
[2] Technion Israel Inst Technol, Dept Comp Sci, Ctr Graph & Geometr Comp, IL-32000 Haifa, Israel
[3] Tel Aviv Univ, Fac Exact Sci, Sch Math Sci, IL-69978 Tel Aviv, Israel
关键词
parameterization; mesh processing; spherical parametrization; spherical embedding;
D O I
10.1007/s00607-004-0056-9
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Parameterization of 3D mesh data is important for many graphics and mesh processing applications, in particular for texture mapping, remeshing and morphing. Closed, manifold, genus-0 meshes are topologically equivalent to a sphere, hence this is the natural parameter domain for them. Parameterizing a 3D triangle mesh onto the 3D sphere means assigning a 3D position on the unit sphere to each of the mesh vertices, such that the spherical triangles induced by the mesh connectivity do not overlap. This is called a spherical triangulation. In this paper we formulate a set of necessary and sufficient conditions on the spherical angles of the spherical triangles for them to form a spherical triangulation. We formulate and solve an optimization procedure to produce spherical triangulations which reflect the geometric properties of a given 3D mesh in various ways.
引用
收藏
页码:185 / 193
页数:9
相关论文
共 50 条
  • [41] Reconstructing Sharp Features of Triangular Meshes
    Mitchell, Joseph S. B.
    Packer, Eli
    PROCEEDINGS OF THE TWENTY-FIFTH ANNUAL SYMPOSIUM ON COMPUTATIONAL GEOMETRY (SCG'09), 2009, : 102 - 103
  • [42] Approximating uniform triangular meshes in polygons
    Aurenhammer, F
    Katoh, N
    Kojima, H
    Ohsaki, M
    Xu, YF
    COMPUTING AND COMBINATORICS, PROCEEDINGS, 2000, 1858 : 23 - 33
  • [43] Adaptive refinement scheme for triangular meshes
    Laboratory of Advanced Manufacture Technology, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China
    不详
    Jisuanji Gongcheng, 2006, 12 (14-16):
  • [44] A general algorithm for triangular meshes simplification
    Pivec, Bostjan
    Domiter, Vid
    PROCEEDING OF THE 11TH WSEAS INTERNATIONAL CONFERENCE ON COMPUTERS: COMPUTER SCIENCE AND TECHNOLOGY, VOL 4, 2007, : 611 - +
  • [45] An inequality on the edge lengths of triangular meshes
    Jiang, Minghui
    COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2011, 44 (02): : 100 - 103
  • [46] Morphing of triangular meshes in shape space
    Wuhrer S.
    Bose P.
    Chang S.
    O'Rourke J.
    Brunton A.
    International Journal of Shape Modeling, 2010, 16 (1-2): : 195 - 212
  • [47] Adaptive subdivision schemes for triangular meshes
    Amresh, A
    Farin, G
    Razdan, A
    HIERARCHICAL AND GEOMETRICAL METHODS IN SCIENTIFIC VISUALIZATION, 2003, : 319 - 327
  • [48] GPU inclusion test for triangular meshes
    Ruiz de Miras, Juan
    Salazar, Mario
    JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING, 2018, 120 : 170 - 181
  • [49] Triangular mesh parameterization with trimmed surfaces
    Ruiz, Oscar E.
    Mejia, Daniel
    Cadavid, Carlos A.
    INTERNATIONAL JOURNAL OF INTERACTIVE DESIGN AND MANUFACTURING - IJIDEM, 2015, 9 (04): : 303 - 316
  • [50] Computing geodesic distances on triangular meshes
    Novotni, M
    Klein, R
    WSCG'2002, VOLS I AND II, CONFERENCE PROCEEDINGS, 2002, : 341 - 347