Robust spherical parameterization of triangular meshes

被引:24
|
作者
Sheffer, A
Gotsman, C
Dyn, N
机构
[1] Univ British Columbia, Dept Comp Sci, Vancouver, BC V6T 1Z4, Canada
[2] Technion Israel Inst Technol, Dept Comp Sci, Ctr Graph & Geometr Comp, IL-32000 Haifa, Israel
[3] Tel Aviv Univ, Fac Exact Sci, Sch Math Sci, IL-69978 Tel Aviv, Israel
关键词
parameterization; mesh processing; spherical parametrization; spherical embedding;
D O I
10.1007/s00607-004-0056-9
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Parameterization of 3D mesh data is important for many graphics and mesh processing applications, in particular for texture mapping, remeshing and morphing. Closed, manifold, genus-0 meshes are topologically equivalent to a sphere, hence this is the natural parameter domain for them. Parameterizing a 3D triangle mesh onto the 3D sphere means assigning a 3D position on the unit sphere to each of the mesh vertices, such that the spherical triangles induced by the mesh connectivity do not overlap. This is called a spherical triangulation. In this paper we formulate a set of necessary and sufficient conditions on the spherical angles of the spherical triangles for them to form a spherical triangulation. We formulate and solve an optimization procedure to produce spherical triangulations which reflect the geometric properties of a given 3D mesh in various ways.
引用
收藏
页码:185 / 193
页数:9
相关论文
共 50 条
  • [21] A robust feature-preserving semi-regular remeshing method for triangular meshes
    Chien-Hsing Chiang
    Bin-Shyan Jong
    Tsong-Wuu Lin
    The Visual Computer, 2011, 27 : 811 - 825
  • [22] A robust feature-preserving semi-regular remeshing method for triangular meshes
    Chiang, Chien-Hsing
    Jong, Bin-Shyan
    Lin, Tsong-Wuu
    VISUAL COMPUTER, 2011, 27 (09): : 811 - 825
  • [23] MAC Schemes on Triangular Meshes
    Eymard, Robert
    Fuhrmann, Juergen
    Linke, Alexander
    FINITE VOLUMES FOR COMPLEX APPLICATIONS VI: PROBLEMS & PERSPECTIVES, VOLS 1 AND 2, 2011, 4 : 399 - +
  • [24] Thin discrete triangular meshes
    Barneva, RP
    Brimkov, VE
    Nehlig, P
    THEORETICAL COMPUTER SCIENCE, 2000, 246 (1-2) : 73 - 105
  • [25] Geodesic paths on triangular meshes
    Martínez, D
    Velho, L
    Carvalho, PC
    XVII BRAZILIAN SYMPOSIUM ON COMPUTER GRAPHICS AND IMAGE PROCESSING, PROCEEDINGS, 2004, : 210 - 217
  • [26] Computing geodesics on triangular meshes
    Martínez, D
    Velho, L
    Carvalho, PC
    COMPUTERS & GRAPHICS-UK, 2005, 29 (05): : 667 - 675
  • [27] Directional smoothing of triangular meshes
    Zhao, HX
    Xu, GL
    COMPUTER GRAPHICS, IMAGING AND VISION: NEW TRENDS, 2005, : 397 - 402
  • [28] Parametric Blending of Triangular Meshes
    Shin, Min-Chul
    Hwang, Hae-Do
    Yoon, Seung-Hyun
    Lee, Jieun
    SYMMETRY-BASEL, 2018, 10 (11):
  • [29] Geometric snakes for triangular meshes
    Lee, YJ
    Lee, SY
    COMPUTER GRAPHICS FORUM, 2002, 21 (03) : 229 - +
  • [30] Composite schemes on triangular meshes
    Janda, M
    Kozel, K
    Liska, R
    HYPERBOLIC PROBLEMS: THEORY, NUMERICS, APPLICATIONS, VOLS I AND II, 2001, 140 : 563 - 572