Optimal regularity at the free boundary for the infinity obstacle problem

被引:19
|
作者
Rossi, J. D. [1 ]
Teixeira, E. V. [2 ]
Urbano, J. M. [3 ]
机构
[1] Univ Alicante, Dept Math Anal, E-03080 Alicante, Spain
[2] Univ Fed Ceara, BR-60455760 Fortaleza, CE, Brazil
[3] Univ Coimbra, Dept Math, CMUC, P-3001501 Coimbra, Portugal
关键词
Obstacle problem; infinity Laplacian; free boundary; optimal regularity; TUG-OF-WAR; LAPLACIAN;
D O I
10.4171/IFB/347
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper deals with the obstacle problem for the infinity Laplacian. The main results are a characterization of the solution through comparison with cones that lie above the obstacle and the sharp C-1,C-1/3-regularity of the solutions at the free boundary.
引用
收藏
页码:381 / 398
页数:18
相关论文
共 50 条
  • [31] On the regularity of the free boundary in the parabolic obstacle problem. Application to American options
    Blanchet, Adrien
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2006, 65 (07) : 1362 - 1378
  • [32] On the regularity of the free boundary for quasilinear obstacle problems
    Challal, S.
    Lyaghfouri, A.
    Rodrigues, J. F.
    Teymurazyan, R.
    [J]. INTERFACES AND FREE BOUNDARIES, 2014, 16 (03) : 359 - 394
  • [33] Optimal Regularity for the No-Sign Obstacle Problem
    Andersson, John
    Lindgren, Erik
    Shahgholian, Henrik
    [J]. COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2013, 66 (02) : 245 - 262
  • [34] Regularity of a free boundary problem
    Lavi Karp
    Henrik Shahgholian
    [J]. The Journal of Geometric Analysis, 1999, 9 (4): : 653 - 669
  • [35] Generic regularity of free boundaries for the obstacle problem
    Alessio Figalli
    Xavier Ros-Oton
    Joaquim Serra
    [J]. Publications mathématiques de l'IHÉS, 2020, 132 : 181 - 292
  • [36] Generic regularity of free boundaries for the obstacle problem
    Figalli, Alessio
    Ros-Oton, Xavier
    Serra, Joaquim
    [J]. PUBLICATIONS MATHEMATIQUES DE L IHES, 2020, 132 (01): : 181 - 292
  • [37] Optimal Regularity and Nondegeneracy of a Free Boundary Problem Related to the Fractional Laplacian
    Yang, Ray
    [J]. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2013, 208 (03) : 693 - 723
  • [38] Optimal Regularity and Nondegeneracy of a Free Boundary Problem Related to the Fractional Laplacian
    Ray Yang
    [J]. Archive for Rational Mechanics and Analysis, 2013, 208 : 693 - 723
  • [39] Optimal regularity for the obstacle problem for the p-Laplacian
    Andersson, John
    Lindgren, Erik
    Shahgholian, Henrik
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2015, 259 (06) : 2167 - 2179
  • [40] Optimal regularity of the thin obstacle problem by an epiperimetric inequality
    Carducci, Matteo
    [J]. ANNALI DI MATEMATICA PURA ED APPLICATA, 2023, 203 (3) : 1311 - 1326