Optimal Regularity and Nondegeneracy of a Free Boundary Problem Related to the Fractional Laplacian

被引:0
|
作者
Ray Yang
机构
[1] New York University,Courant Institute of Mathematical Sciences
关键词
Free Boundary; Free Boundary Problem; Harnack Inequality; Obstacle Problem; Poisson Kernel;
D O I
暂无
中图分类号
学科分类号
摘要
We discuss the optimal regularity and nondegeneracy of a free boundary problem related to the fractional Laplacian. This work is related to, but addresses a different problem from, recent work of Caffarelli et al. (J Eur Math Soc (JEMS) 12(5):1151–1179, 2010). A variant of the boundary Harnack inequality is also proved, where it is no longer required that the function be zero along the boundary.
引用
收藏
页码:693 / 723
页数:30
相关论文
共 50 条
  • [1] Optimal Regularity and Nondegeneracy of a Free Boundary Problem Related to the Fractional Laplacian
    Yang, Ray
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2013, 208 (03) : 693 - 723
  • [2] Higher regularity of the free boundary in the obstacle problem for the fractional Laplacian
    Jhaveri, Yash
    Neumayer, Robin
    ADVANCES IN MATHEMATICS, 2017, 311 : 748 - 795
  • [3] Regularity of the free boundary for the obstacle problem for the fractional Laplacian with drift
    Garofalo, Nicola
    Petrosyan, Arshak
    Pop, Camelia A.
    Garcia, Mariana Smit Vega
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2017, 34 (03): : 533 - 570
  • [4] GLOBAL REGULARITY FOR THE FREE BOUNDARY IN THE OBSTACLE PROBLEM FOR THE FRACTIONAL LAPLACIAN
    Barrios, Begona
    Figalli, Alessio
    Ros-Oton, Xavier
    AMERICAN JOURNAL OF MATHEMATICS, 2018, 140 (02) : 415 - 447
  • [5] Regularity estimates for the solution and the free boundary of the obstacle problem for the fractional Laplacian
    Luis A. Caffarelli
    Sandro Salsa
    Luis Silvestre
    Inventiones mathematicae, 2008, 171 : 425 - 461
  • [6] Regularity in a one-phase free boundary problem for the fractional Laplacian
    De Silva, D.
    Roquejoffre, J. M.
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2012, 29 (03): : 335 - 367
  • [7] Regularity estimates for the solution and the free boundary of the obstacle problem for the fractional Laplacian
    Caffarelli, Luis A.
    Salsa, Sandro
    Silvestre, Luis
    INVENTIONES MATHEMATICAE, 2008, 171 (02) : 425 - 461
  • [8] The Dirichlet problem for the fractional Laplacian: Regularity up to the boundary
    Ros-Oton, Xavier
    Serra, Joaquim
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2014, 101 (03): : 275 - 302
  • [9] The Neumann problem for the fractional Laplacian: regularity up to the boundary
    Audrito, Alessandro
    Felipe-Navarro, Juan-Carlos
    Ros-Oton, Xavier
    ANNALI DELLA SCUOLA NORMALE SUPERIORE DI PISA-CLASSE DI SCIENZE, 2023, 24 (02) : 1155 - 1222
  • [10] OPTIMAL REGULARITY AND FREE BOUNDARY REGULARITY FOR THE SIGNORINI PROBLEM
    Andersson, J.
    ST PETERSBURG MATHEMATICAL JOURNAL, 2013, 24 (03) : 371 - 386