ASSOUAD-MINIMALITY OF MORAN SETS UNDER QUASI-LIPSCHITZ MAPPINGS

被引:8
|
作者
Xi, Lifeng [1 ]
Deng, Juan [2 ]
Wen, Zhiying [3 ]
机构
[1] Ningbo Univ, Dept Math, Ningbo 315211, Zhejiang, Peoples R China
[2] Shenzhen Univ, Coll Math & Stat, Shenzhen 518000, Peoples R China
[3] Tsinghua Univ, Dept Math, Beijing 100084, Peoples R China
基金
中国国家自然科学基金;
关键词
Fractal; Moran Set; Assouad Dimension; Quasi-Lipschitz Mapping; EQUIVALENCE; DIMENSION;
D O I
10.1142/S0218348X17500372
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The quasi-Lipschitz mappings, weaker than the bi-Lipschitz mappings, preserve Hausdorff, packing and box dimensions, but change Assouad dimension dim(A)(.). In this paper, for Moran fractals, we investigate the change of their Assouad dimension under the quasi-Lipschitz mappings. We study a class of Moran set which is quasi-Lipschitz Assouad-minimal, i.e. for any E in the class, dimA f(E) >= dim(A)(E) for all quasi-Lipschitz mappings f defined on E. For another class of Moran sets, we prove that for any F in the class, inf(g) dim(A) g(F) = dimqA F, where the infimum is taken over all quasi-Lipschitz mappings g defined on F, and dim(q)A(.) is the quasi-Assouad dimension introduced in [F. Lu and L. F. Xi, Quasi-Assouad dimension of fractals, J. Fractal Geom. 3 (2016) 187-215].
引用
收藏
页数:8
相关论文
共 11 条
  • [1] Quasi-Lipschitz equivalence of quasi Ahlfors-David regular sets
    WANG Qin XI LiFeng School of Computer Science and Information Technology Zhejiang Wanli University Ningbo ChinaInstitute of Mathematics Zhejiang Wanli University Ningbo China
    Science China(Mathematics), 2011, 54 (12) : 2573 - 2582
  • [2] Quasi-Lipschitz equivalence of quasi Ahlfors-David regular sets
    Qin Wang
    LiFeng Xi
    Science China Mathematics, 2011, 54 : 2573 - 2582
  • [3] Quasi-Lipschitz equivalence of quasi Ahlfors-David regular sets
    WANG Qin1 & XI LiFeng2
    2Institute of Mathematics
    Science China Mathematics, 2011, (12) : 2573 - 2582
  • [4] Quasi-Lipschitz equivalence of quasi Ahlfors-David regular sets
    Wang Qin
    Xi LiFeng
    SCIENCE CHINA-MATHEMATICS, 2011, 54 (12) : 2573 - 2582
  • [5] Quasi-Lipschitz equivalence of Ahlfors-David regular sets
    Wang, Qin
    Xi, Lifeng
    NONLINEARITY, 2011, 24 (03) : 941 - 950
  • [6] QUASI-LIPSCHITZ EQUIVALENCE OF SUBSETS OF AHLFORS-DAVID REGULAR SETS
    Guo, Qiuli
    Li, Hao
    Wang, Qin
    ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2014, 39 (02) : 759 - 769
  • [7] Non-convex hybrid algorithm for a family of countable quasi-Lipschitz mappings and application
    Guan, Jinyu
    Tang, Yanxia
    Ma, Pengcheng
    Xu, Yongchun
    Su, Yongfu
    FIXED POINT THEORY AND APPLICATIONS, 2015, : 1 - 11
  • [8] Non-convex hybrid algorithm for a family of countable quasi-Lipschitz mappings and application
    Jinyu Guan
    Yanxia Tang
    Pengcheng Ma
    Yongchun Xu
    Yongfu Su
    Fixed Point Theory and Applications, 2015
  • [9] Hybrid iterative algorithm for finite families of countable Bregman quasi-Lipschitz mappings with applications in Banach spaces
    Chen, Minjiang
    Bi, Jianzhi
    Su, Yongfu
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2015,
  • [10] Hybrid iterative algorithm for finite families of countable Bregman quasi-Lipschitz mappings with applications in Banach spaces
    Minjiang Chen
    Jianzhi Bi
    Yongfu Su
    Journal of Inequalities and Applications, 2015