ASSOUAD-MINIMALITY OF MORAN SETS UNDER QUASI-LIPSCHITZ MAPPINGS

被引:8
|
作者
Xi, Lifeng [1 ]
Deng, Juan [2 ]
Wen, Zhiying [3 ]
机构
[1] Ningbo Univ, Dept Math, Ningbo 315211, Zhejiang, Peoples R China
[2] Shenzhen Univ, Coll Math & Stat, Shenzhen 518000, Peoples R China
[3] Tsinghua Univ, Dept Math, Beijing 100084, Peoples R China
基金
中国国家自然科学基金;
关键词
Fractal; Moran Set; Assouad Dimension; Quasi-Lipschitz Mapping; EQUIVALENCE; DIMENSION;
D O I
10.1142/S0218348X17500372
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The quasi-Lipschitz mappings, weaker than the bi-Lipschitz mappings, preserve Hausdorff, packing and box dimensions, but change Assouad dimension dim(A)(.). In this paper, for Moran fractals, we investigate the change of their Assouad dimension under the quasi-Lipschitz mappings. We study a class of Moran set which is quasi-Lipschitz Assouad-minimal, i.e. for any E in the class, dimA f(E) >= dim(A)(E) for all quasi-Lipschitz mappings f defined on E. For another class of Moran sets, we prove that for any F in the class, inf(g) dim(A) g(F) = dimqA F, where the infimum is taken over all quasi-Lipschitz mappings g defined on F, and dim(q)A(.) is the quasi-Assouad dimension introduced in [F. Lu and L. F. Xi, Quasi-Assouad dimension of fractals, J. Fractal Geom. 3 (2016) 187-215].
引用
收藏
页数:8
相关论文
共 11 条
  • [11] Cloud hybrid methods for solving split equilibrium and fixed point problems for a family of countable quasi-Lipschitz mappings and applications
    Xu, Yongchun
    Tang, Yanxia
    Guan, Jinyu
    Su, Yongfu
    JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2017, 10 (02): : 752 - 770