Real-space method for highly parallelizable electronic transport calculations

被引:12
|
作者
Feldman, Baruch [1 ]
Seideman, Tamar [2 ]
Hod, Oded [3 ]
Kronik, Leeor [1 ]
机构
[1] Weizmann Inst Sci, Dept Mat & Interfaces, IL-76100 Rehovot, Israel
[2] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA
[3] Tel Aviv Univ, Sch Chem, Dept Chem Phys, Raymond & Beverly Sackler Fac Exact Sci, IL-69978 Tel Aviv, Israel
来源
PHYSICAL REVIEW B | 2014年 / 90卷 / 03期
基金
以色列科学基金会; 欧洲研究理事会; 美国国家科学基金会;
关键词
DISCRETE VARIABLE REPRESENTATION; COMPLEX ABSORBING POTENTIALS; PSEUDOPOTENTIAL METHOD; LINEAR-SYSTEMS; AB-INITIO; CONDUCTANCE; NANOSTRUCTURES; TRANSMISSION; WIRES;
D O I
10.1103/PhysRevB.90.035445
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We present a real-space method for first-principles nanoscale electronic transport calculations. We use the nonequilibrium Green's function method with density functional theory and implement absorbing boundary conditions (ABCs, also known as complex absorbing potentials, or CAPs) to represent the effects of the semi-infinite leads. In real space, the Kohn-Sham Hamiltonian matrix is highly sparse. As a result, the transport problem parallelizes naturally and can scale favorably with system size, enabling the computation of conductance in relatively large molecular junction models. Our use of ABCs circumvents the demanding task of explicitly calculating the leads' self-energies from surface Green's functions, and is expected to be more accurate than the use of the jellium approximation. In addition, we take advantage of the sparsity in real space to solve efficiently for the Green's function over the entire energy range relevant to low-bias transport. We illustrate the advantages of our method with calculations on several challenging test systems and find good agreement with reference calculation results.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] Real-space method for first-principles electron transport calculations: Self-energy terms of electrodes for large systems
    Ono, Tomoya
    Tsukamoto, Shigeru
    PHYSICAL REVIEW B, 2016, 93 (04)
  • [42] Lagrange-function approach to real-space order-N electronic-structure calculations
    Varga, K
    Pantelides, ST
    PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2006, 243 (05): : 1110 - 1120
  • [43] Real-space electronic-structure calculations with a time-saving double-grid technique
    Ono, T
    Hirose, K
    PHYSICAL REVIEW B, 2005, 72 (08)
  • [44] Acres: Adaptive coordinate real-space electronic structure
    Modine, NA
    Zumbach, G
    Kaxiras, E
    MATERIALS THEORY, SIMULATIONS, AND PARALLEL ALGORITHMS, 1996, 408 : 139 - 144
  • [45] A massively-parallel electronic-structure calculations based on real-space density functional theory
    Iwata, Jun-Ichi
    Takahashi, Daisuke
    Oshiyama, Atsushi
    Boku, Taisuke
    Shiraishi, Kenji
    Okada, Susumu
    Yabana, Kazuhiro
    JOURNAL OF COMPUTATIONAL PHYSICS, 2010, 229 (06) : 2339 - 2363
  • [46] Electronic structure of tin oxides by electron energy loss spectroscopy and real-space multiple scattering calculations
    Moreno, MS
    Egerton, RF
    Rehr, JJ
    Midgley, PA
    PHYSICAL REVIEW B, 2005, 71 (03):
  • [47] A new real-space algorithm for realistic density functional calculations
    E. Krotscheck
    E. R. Hernández
    S. Janecek
    M. S. Kaczmarski
    R. Wahl
    The European Physical Journal D, 2007, 43 : 173 - 176
  • [48] A new real-space algorithm for realistic density functional calculations
    Krotscheck, E.
    Hernandez, E. R.
    Janecek, S.
    Kaczmarski, M. S.
    Wahl, R.
    EUROPEAN PHYSICAL JOURNAL D, 2007, 43 (1-3): : 173 - 176
  • [49] Real-space Green's function calculations of Compton profiles
    Mattern, Brian A.
    Seidler, Gerald T.
    Kas, Joshua J.
    Pacold, Joseph I.
    Rehr, John J.
    PHYSICAL REVIEW B, 2012, 85 (11)
  • [50] Exact real-space renormalization method and applications
    Feiguin, Adrian E.
    Somma, Rolando D.
    Batista, Cristian D.
    PHYSICAL REVIEW B, 2013, 88 (07)