Wiener-type Invariants on Graph Properties

被引:2
|
作者
Zhou, Qiannan [1 ]
Wang, Ligong [1 ]
Lu, Yong [1 ]
机构
[1] Northwestern Polytech Univ, Sch Sci, Dept Appl Math, Xian 710072, Shaanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Wiener-type index; degree sequence; graph properties; HARARY INDEX; TOPOLOGICAL INDEXES; HAMILTONIAN PROPERTY; TRACEABLE GRAPHS;
D O I
10.2298/FIL1802489Z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Wiener-type invariants of a simple connected graph G = (V(G), E(G)) can be expressed in terms of the quantities W-f = Sigma({u,v}subset of v(G))f (d(G)(u,v)) for various choices of the function f(x), where d(G) (u, v) is the distance between vertices u and v in G. In this paper, we mainly give some sufficient conditions for a connected graph to be k-connected, beta-deficient, k-hamiltonian, k-edge-hamiltonian, k-path-coverable or satisfy alpha(G) <= k.
引用
收藏
页码:489 / 502
页数:14
相关论文
共 50 条
  • [1] WIENER-TYPE INVARIANTS OF SOME GRAPH OPERATIONS
    Hossein-Zadeh, S.
    Hamzeh, A.
    Ashrafi, A. R.
    [J]. FILOMAT, 2009, 23 (03) : 103 - 113
  • [2] Greedy Trees, Caterpillars, and Wiener-type Graph Invariants
    Schmuck, Nina S.
    Wagner, Stephan G.
    Wang, Hua
    [J]. MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2012, 68 (01) : 273 - 292
  • [3] Wiener-Type Invariants and Hamiltonian Properties of Graphs
    Zhou, Qiannan
    Wang, Ligong
    Lu, Yong
    [J]. FILOMAT, 2019, 33 (13) : 4045 - 4058
  • [4] Extremal Graphs under Wiener-type Invariants
    Hamzeh, A.
    Hossein-Zadeh, S.
    Ashrafi, A. R.
    [J]. MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2013, 69 (01) : 47 - 54
  • [5] CLUSTERS AND VARIOUS VERSIONS OF WIENER-TYPE INVARIANTS
    Azari, Mahdieh
    Iranmanesh, Ali
    [J]. KRAGUJEVAC JOURNAL OF MATHEMATICS, 2015, 39 (02): : 155 - 171
  • [6] A theorem on Wiener-type invariants for isometric subgraphs of hypercubes
    Klavzar, Sandi
    Gutman, Ivan
    [J]. APPLIED MATHEMATICS LETTERS, 2006, 19 (10) : 1129 - 1133
  • [7] A WIENER-TYPE GRAPH INVARIANT FOR SOME BIPARTITE GRAPHS
    DOBRYNIN, AA
    GUTMAN, I
    DOMOTOR, G
    [J]. APPLIED MATHEMATICS LETTERS, 1995, 8 (05) : 57 - 62
  • [8] Wiener-Type Invariants and k-Leaf-Connected Graphs
    Ao, Guoyan
    Liu, Ruifang
    Yuan, Jinjiang
    Yu, Guanglong
    [J]. BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2023, 46 (01)
  • [9] Wiener-Type Invariants and k-Leaf-Connected Graphs
    Guoyan Ao
    Ruifang Liu
    Jinjiang Yuan
    Guanglong Yu
    [J]. Bulletin of the Malaysian Mathematical Sciences Society, 2023, 46
  • [10] Some sufficient conditions for hamiltonian property in terms of wiener-type invariants
    Kuang M.
    Huang G.
    Deng H.
    [J]. Proceedings - Mathematical Sciences, 2016, 126 (1) : 1 - 9