Wiener-Type Invariants and k-Leaf-Connected Graphs

被引:0
|
作者
Guoyan Ao
Ruifang Liu
Jinjiang Yuan
Guanglong Yu
机构
[1] Zhengzhou University,School of Mathematics and Statistics
[2] Hulunbuir University,School of Mathematics and Statistics
[3] Lingnan Normal University,Department of Mathematics
关键词
-leaf-connected; Wiener-type invariants; distance (signless Laplacian) spectral radius; Harary spectral radius; 05C50; 05C35;
D O I
暂无
中图分类号
学科分类号
摘要
The Wiener-type invariants of a connected graph G are defined as Wf=∑u,v∈V(G)f(dG(u,v))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W_{f}=\sum _{u,v\in V(G)}f(d_{G}(u,v))$$\end{document}, where f(x) is a nonnegative function on the distance dG(u,v).\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d_{G}(u,v).$$\end{document} For integer k≥2,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k\ge 2,$$\end{document} a graph G is called k-leaf-connected if |V(G)|≥k+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|V(G)|\ge k+1$$\end{document} and given any subset S⊆V(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S\subseteq V(G)$$\end{document} with |S|=k,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|S|=k,$$\end{document}G always has a spanning tree T such that S is precisely the set of leaves of T. Thus, a graph is 2-leaf-connected if and only if it is Hamilton-connected. In this paper, we present best possible Wiener-type invariants conditions to guarantee a graph to be k-leaf-connected, which extend the corresponding results on Hamilton-connected graphs. As applications, sufficient conditions for a graph to be k-leaf-connected in terms of the distance (distance signless Laplacian, Harary) spectral radius of G or its complement are also obtained.
引用
收藏
相关论文
共 50 条
  • [1] Wiener-Type Invariants and k-Leaf-Connected Graphs
    Ao, Guoyan
    Liu, Ruifang
    Yuan, Jinjiang
    Yu, Guanglong
    [J]. BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2023, 46 (01)
  • [2] ON K-LEAF-CONNECTED GRAPHS
    GURGEL, MA
    WAKABAYASHI, Y
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES B, 1986, 41 (01) : 1 - 16
  • [3] Wiener-Type Invariants and Hamiltonian Properties of Graphs
    Zhou, Qiannan
    Wang, Ligong
    Lu, Yong
    [J]. FILOMAT, 2019, 33 (13) : 4045 - 4058
  • [4] Extremal Graphs under Wiener-type Invariants
    Hamzeh, A.
    Hossein-Zadeh, S.
    Ashrafi, A. R.
    [J]. MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2013, 69 (01) : 47 - 54
  • [5] A Fan-type condition for graphs to be k-leaf-connected
    Maezawa, Shun-ichi
    Matsubara, Ryota
    Matsuda, Haruhide
    [J]. DISCRETE MATHEMATICS, 2021, 344 (04)
  • [6] On Sufficient Conditions for k-Leaf-Connected Graphs
    Guoyan AO
    Xia HONG
    [J]. Journal of Mathematical Research with Applications., 2024, 44 (06) - 722
  • [7] Improved sufficient conditions for k-leaf-connected graphs
    Ao, Guoyan
    Liu, Ruifang
    Yuan, Jinjiang
    Li, Rao
    [J]. DISCRETE APPLIED MATHEMATICS, 2022, 314 : 17 - 30
  • [8] An improvement of sufficient condition for k-leaf-connected graphs
    Ma, Tingyan
    Ao, Guoyan
    Liu, Ruifang
    Wang, Ligong
    Hu, Yang
    [J]. DISCRETE APPLIED MATHEMATICS, 2023, 331 : 1 - 10
  • [9] Some sufficient conditions for graphs to be k-leaf-connected
    Liu, Hechao
    You, Lihua
    Hua, Hongbo
    Du, Zenan
    [J]. DISCRETE APPLIED MATHEMATICS, 2024, 352 : 1 - 8
  • [10] Some sufficient conditions for graphs being k-leaf-connected✩
    Wu, Jiadong
    Xue, Yisai
    Kang, Liying
    [J]. DISCRETE APPLIED MATHEMATICS, 2023, 339 : 11 - 20