A WIENER-TYPE GRAPH INVARIANT FOR SOME BIPARTITE GRAPHS

被引:35
|
作者
DOBRYNIN, AA
GUTMAN, I
DOMOTOR, G
机构
[1] UNIV KRAGUJEVAC, FAC SCI, YU-34000 KRAGUJEVAC, YUGOSLAVIA
[2] ATTILA JOZSEF UNIV, H-6701 SZEGED, HUNGARY
关键词
BIPARTITE GRAPH; GRAPH INVARIANT; WIENER NUMBER;
D O I
10.1016/0893-9659(95)00067-Z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, a Wiener-type graph invariant W* is considered, defined as the sum of the product n(u)(e)n(v)(e) over all edges e = (u, v) of a connected graph G, where n(u)(e) is the number of vertices of G, lying closer to u than to v. A class C(h, k) of bipartite graphs with cyclomatic number h is designed, such that for G(1), G(2) is an element of C(h, k), W*(G(1)) = W*(G(2)) (mod 2k(2)). This fully parallels a previously known result for the Wiener number.
引用
收藏
页码:57 / 62
页数:6
相关论文
共 50 条
  • [1] WIENER-TYPE INVARIANTS OF SOME GRAPH OPERATIONS
    Hossein-Zadeh, S.
    Hamzeh, A.
    Ashrafi, A. R.
    [J]. FILOMAT, 2009, 23 (03) : 103 - 113
  • [2] Wiener-type Invariants on Graph Properties
    Zhou, Qiannan
    Wang, Ligong
    Lu, Yong
    [J]. FILOMAT, 2018, 32 (02) : 489 - 502
  • [3] On Wiener-type polynomials of thorn graphs
    Zhou, Bo
    Vukicevic, Damir
    [J]. JOURNAL OF CHEMOMETRICS, 2009, 23 (11-12) : 600 - 604
  • [4] The Wiener-type indices of the corona of two graphs
    Bian, Hong
    Ma, Xiaoling
    Vumar, Elkin
    Yu, Haizheng
    [J]. ARS COMBINATORIA, 2012, 107 : 193 - 199
  • [5] Extremal Graphs under Wiener-type Invariants
    Hamzeh, A.
    Hossein-Zadeh, S.
    Ashrafi, A. R.
    [J]. MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2013, 69 (01) : 47 - 54
  • [6] Wiener-Type Invariants and Hamiltonian Properties of Graphs
    Zhou, Qiannan
    Wang, Ligong
    Lu, Yong
    [J]. FILOMAT, 2019, 33 (13) : 4045 - 4058
  • [7] Wiener-type indices of Parikh word representable graphs
    Thomas, Nobin
    Mathew, Lisa
    Sriram, Sastha
    Subramanian, K. G.
    [J]. ARS MATHEMATICA CONTEMPORANEA, 2021, 20 (02) : 243 - 260
  • [8] Greedy Trees, Caterpillars, and Wiener-type Graph Invariants
    Schmuck, Nina S.
    Wagner, Stephan G.
    Wang, Hua
    [J]. MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2012, 68 (01) : 273 - 292
  • [9] Wiener-Type Invariants and k-Leaf-Connected Graphs
    Ao, Guoyan
    Liu, Ruifang
    Yuan, Jinjiang
    Yu, Guanglong
    [J]. BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2023, 46 (01)
  • [10] Wiener-Type Invariants and k-Leaf-Connected Graphs
    Guoyan Ao
    Ruifang Liu
    Jinjiang Yuan
    Guanglong Yu
    [J]. Bulletin of the Malaysian Mathematical Sciences Society, 2023, 46