Estimation and prediction of a generalized mixed-effects model with t-process for longitudinal correlated binary data

被引:2
|
作者
Cao, Chunzheng [1 ]
He, Ming [1 ]
Shi, Jian Qing [2 ,3 ]
Liu, Xin [1 ]
机构
[1] Nanjing Univ Informat Sci & Technol, Sch Math & Stat, Nanjing, Peoples R China
[2] Southern Univ Sci & Technol, Dept Stat & Data Sci, Coll Sci, Shenzhen, Peoples R China
[3] Newcastle Univ, Sch Math Stat & Phys, Newcastle Upon Tyne, Tyne & Wear, England
基金
中国国家自然科学基金;
关键词
Functional data; Heavy-tailed process; Prediction; Random-effects; Robustness;
D O I
10.1007/s00180-020-01057-0
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We propose a generalized mixed-effects model based on t-process for longitudinal correlated binary data. The correlations among repeated binary outcomes are defined by a latent t-process, which provides a new framework on modeling nonlinear random- effects. The covariance kernel of the process can adaptively capture the subject-specific variations while the heavy-tails of the t-process enable robust inferences. We develop an efficient estimation procedure based on Monte Carlo EM algorithm and a prediction approach through conditional inference. Numerical studies indicate that the estimation and prediction based on the proposed model is robust against outliers compared with Gaussian model. We use the renal anemia and meteorological data as illustrative examples.
引用
收藏
页码:1461 / 1479
页数:19
相关论文
共 50 条
  • [31] Generalized Linear Mixed-Effects Modeling Programs in R for Binary Outcomes
    Lee, Wooyeol
    Grimm, Kevin J.
    [J]. STRUCTURAL EQUATION MODELING-A MULTIDISCIPLINARY JOURNAL, 2018, 25 (05) : 824 - 828
  • [32] Functional mixed-effects model for periodic data
    Qin, L
    Guo, WS
    [J]. BIOSTATISTICS, 2006, 7 (02) : 225 - 234
  • [33] Predictions of machine learning with mixed-effects in analyzing longitudinal data under model misspecification
    Hu, Shuwen
    Wang, You-Gan
    Drovandi, Christopher
    Cao, Taoyun
    [J]. STATISTICAL METHODS AND APPLICATIONS, 2023, 32 (02): : 681 - 711
  • [34] A MIXED-EFFECTS MODEL FOR CATEGORICAL-DATA
    BEITLER, PJ
    LANDIS, JR
    [J]. BIOMETRICS, 1985, 41 (04) : 991 - 1000
  • [35] Estimation of rank-tracking probabilities using nonparametric mixed-effects models for longitudinal data
    Tian, Xin
    Wu, Colin O.
    [J]. STATISTICS AND ITS INTERFACE, 2014, 7 (01) : 87 - 99
  • [36] Bayesian Variable Selection and Estimation in Semiparametric Simplex Mixed-Effects Models with Longitudinal Proportional Data
    Tang, Anmin
    Duan, Xingde
    Zhao, Yuanying
    [J]. ENTROPY, 2022, 24 (10)
  • [37] Approximate conditional inference in mixed-effects models with binary data
    Lee, Woojoo
    Shi, Jian Qing
    Lee, Youngjo
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2010, 54 (01) : 173 - 184
  • [38] Predictions of machine learning with mixed-effects in analyzing longitudinal data under model misspecification
    Shuwen Hu
    You-Gan Wang
    Christopher Drovandi
    Taoyun Cao
    [J]. Statistical Methods & Applications, 2023, 32 : 681 - 711
  • [39] A two-part mixed-effects model for analyzing longitudinal microbiome compositional data
    Chen, Eric Z.
    Li, Hongzhe
    [J]. BIOINFORMATICS, 2016, 32 (17) : 2611 - 2617
  • [40] Mixed-Effects Models with Crossed Random Effects for Multivariate Longitudinal Data
    Angel Martinez-Huertas, Jose
    Ferrer, Emilio
    [J]. STRUCTURAL EQUATION MODELING-A MULTIDISCIPLINARY JOURNAL, 2023, 30 (01) : 105 - 122