Predictions of machine learning with mixed-effects in analyzing longitudinal data under model misspecification

被引:2
|
作者
Hu, Shuwen [1 ]
Wang, You-Gan [1 ,2 ]
Drovandi, Christopher [1 ]
Cao, Taoyun [3 ]
机构
[1] Queensland Univ Technol, Sch Math Sci, Brisbane, Qld, Australia
[2] CSIRO Agr & Food, 306 Carmody Rd, St Lucia, Qld, Australia
[3] Guangdong Univ Finance & Econ, Sch Stat & Math, Guangzhou, Peoples R China
来源
STATISTICAL METHODS AND APPLICATIONS | 2023年 / 32卷 / 02期
基金
澳大利亚研究理事会;
关键词
Longitudinal data; Misspecification; Machine learning; Mixed-effects model; Regression tree; Support vector machine; Comparison study; STATISTICAL-MODELS; TREES;
D O I
10.1007/s10260-022-00658-x
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider predictions in longitudinal studies, and investigate the well known statistical mixed-effects model, piecewise linear mixed-effects model and six different popular machine learning approaches: decision trees, bagging, random forest, boosting, support-vector machine and neural network. In order to consider the correlated data in machine learning, the random effects is combined into the traditional tree methods and random forest. Our focus is the performance of statistical modelling and machine learning especially in the cases of the misspecification of the fixed effects and the random effects. Extensive simulation studies have been carried out to evaluate the performance using a number of criteria. Two real datasets from longitudinal studies are analysed to demonstrate our findings. The R code and dataset are freely available at https://github.com/shuwen92/MEML.
引用
收藏
页码:681 / 711
页数:31
相关论文
共 50 条
  • [1] Predictions of machine learning with mixed-effects in analyzing longitudinal data under model misspecification
    Shuwen Hu
    You-Gan Wang
    Christopher Drovandi
    Taoyun Cao
    [J]. Statistical Methods & Applications, 2023, 32 : 681 - 711
  • [2] A two-part mixed-effects model for analyzing longitudinal microbiome compositional data
    Chen, Eric Z.
    Li, Hongzhe
    [J]. BIOINFORMATICS, 2016, 32 (17) : 2611 - 2617
  • [3] A semiparametric mixed-effects model for censored longitudinal data
    Mattos, Thalita B.
    Matos, Larissa Avila
    Lachos, Victor H.
    [J]. STATISTICAL METHODS IN MEDICAL RESEARCH, 2021, 30 (12) : 2582 - 2603
  • [4] Mixed-effects Model For Classification And Prediction In Longitudinal Data Analysis
    Poddar, Mukund
    Harigovind, Gautam
    [J]. 2018 INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND SYSTEMS BIOLOGY (BSB), 2018, : 36 - 39
  • [5] A new mixed-effects mixture model for constrained longitudinal data
    Di Brisco, Agnese Maria
    Migliorati, Sonia
    [J]. STATISTICS IN MEDICINE, 2020, 39 (02) : 129 - 145
  • [6] Linear mixed-effects model for multivariate longitudinal compositional data
    Wang, Zhichao
    Wang, Huiwen
    Wang, Shanshan
    [J]. NEUROCOMPUTING, 2019, 335 : 48 - 58
  • [7] Nested Inverse Gaussian Mixed-Effects Model for Longitudinal Data
    Duan, Xing De
    Zhang, Shi
    Zhang, Wen Zhuan
    Wu, Ying
    [J]. PROCEEDINGS OF THE 9TH INTERNATIONAL CONFERENCE OF INFORMATION AND COMMUNICATION TECHNOLOGY [ICICT-2019], 2019, 154 : 561 - 565
  • [8] A mixed-effects regression model for longitudinal multivariate ordinal data
    Liu, LC
    Hedeker, D
    [J]. BIOMETRICS, 2006, 62 (01) : 261 - 268
  • [9] Multivariatetsemiparametric mixed-effects model for longitudinal data with multiple characteristics
    Taavoni, M.
    Arashi, M.
    Wang, Wan-Lun
    Lin, Tsung-, I
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2021, 91 (02) : 260 - 281
  • [10] A linear mixed model for predicting a binary event from longitudinal data under random effects misspecification
    Albert, Paul S.
    [J]. STATISTICS IN MEDICINE, 2012, 31 (02) : 143 - 154