The radius of a subcategory of modules

被引:31
|
作者
Dao, Hailong [1 ]
Takahashi, Ryo [2 ]
机构
[1] Univ Kansas, Dept Math, Lawrence, KS 66045 USA
[2] Univ Nebraska, Dept Math, Lincoln, NE 68588 USA
基金
美国国家科学基金会;
关键词
radius of subcategory; resolving subcategory; thick subcategory; Cohen-Macaulay module; complete intersection; dimension of triangulated category; Cohen-Macaulay representation type; COHEN-MACAULAY MODULES; GORENSTEIN RINGS; TRIANGULATED CATEGORIES; RESOLVING SUBCATEGORIES; DIMENSION ZERO; COHOMOLOGY; ALGEBRAS;
D O I
10.2140/ant.2014.8.141
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce a new invariant for subcategories X of finitely generated modules over a local ring R which we call the radius of X. We show that if R is a complete intersection and X is resolving, then finiteness of the radius forces X to contain only maximal Cohen-Macaulay modules. We also show that the category of maximal Cohen-Macaulay modules has finite radius when R is a Cohen-Macaulay complete local ring with perfect coefficient field. We link the radius to many well-studied notions such as the dimension of the stable category of maximal Cohen-Macaulay modules, finite/countable Cohen-Macaulay representation type and the uniform Auslander condition.
引用
收藏
页码:141 / 172
页数:32
相关论文
共 50 条