A Smashing Subcategory of the Homotopy Category of Gorenstein Projective Modules

被引:0
|
作者
Nan Gao
机构
[1] Shanghai University,Department of Mathematics
来源
关键词
Gorenstein projective modules; Compactly generated homotopy categories; Smashing subcategory ; Recollements;
D O I
暂无
中图分类号
学科分类号
摘要
Let A be an artin algebra of finite CM-type. In this paper, we show that if A is virtually Gorenstein, then the homotopy category of Gorenstein projective \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$A\mbox{-}$\end{document}modules, denote \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$K(A\mbox{-}{\mathcal {GP}})$\end{document}, is always compactly generated. Based on this result, it will be proved that the homotopy category of projective \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$A\mbox{-}$\end{document}modules, denote \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$K(A\mbox{-}{\mathcal P})$\end{document}, is a smashing subcategory of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$K(A\mbox{-}{\mathcal {GP}})$\end{document} and the corresponding Verdier quotient is also compactly generated. Furthermore, it turns out that the inclusion functor \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$i: K(A\mbox{-}{\mathcal P})\to K(A\mbox{-}{\mathcal {GP}})$\end{document} induces a recollement of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$K(A\mbox{-}{\mathcal {GP}})$\end{document}.
引用
收藏
页码:87 / 91
页数:4
相关论文
共 50 条