Hilbert C*-modules as a subcategory of operator systems and injectivity

被引:0
|
作者
Asadi, Mohammad B. [1 ,2 ]
Behmani, Reza [3 ]
Medghalchi, Ali R. [3 ]
Nikpey, Hamed [4 ]
机构
[1] Univ Tehran, Sch Math Stat & Comp Sci, Coll Sci, Tehran, Iran
[2] Inst Res Fundamental Sci IPM, Sch Math, POB 19395-5746, Tehran, Iran
[3] Kharazmi Univ, Dept Math, 50 Taleghani Ave, Tehran 15618, Iran
[4] Shahid Rajaee Teacher Training Univ, Dept Math, Tehran 16785136, Iran
关键词
Hilbert C*-modules; Extension theorems; Injective objects; Completely positive maps; Completely semi-f-maps; STINESPRINGS THEOREM; MAPS;
D O I
10.1007/s11117-017-0530-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study a category whose objects are Hilbert -modules and whose morphisms are completely semi--maps. We give a characterization of injective objects in this category. In fact, we investigate extendability of completely semi--maps on Hilbert -modules, leading to an analog of the Arveson's extension theorem for completely semi--maps (in contrast with -maps). This theorem together with previous results suggest that the completely semi--maps are proper generalizations of the completely positive maps.
引用
收藏
页码:597 / 607
页数:11
相关论文
共 50 条
  • [1] HYPERRIGID OPERATOR SYSTEMS AND HILBERT MODULES
    Shankar, P.
    Vijayarajan, A. K.
    [J]. ANNALS OF FUNCTIONAL ANALYSIS, 2017, 8 (01): : 133 - 141
  • [2] Controlled Frame for Operator in Hilbert c*-Modules
    Labrigui, Hatim
    Touri, Abdeslam
    Rossafi, Mohamed
    Kabbaj, Samir
    [J]. INTERNATIONAL JOURNAL OF MATHEMATICS AND MATHEMATICAL SCIENCES, 2022, 2022
  • [3] Controlled *-Operator Frames on Hilbert C*-Modules
    Labrigui, Hatim
    Touri, Abdeslam
    Rossafi, Mohamed
    Kabbaj, Samir
    [J]. JOURNAL OF MATHEMATICS, 2021, 2021
  • [4] Solutions to operator equations on Hilbert C*-modules
    Fang, Xiaochun
    Yu, Jing
    Yao, Hongliang
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2009, 431 (11) : 2142 - 2153
  • [5] OPERATOR MODELS FOR HILBERT LOCALLY C*-MODULES
    Gheondea, Aurelian
    [J]. OPERATORS AND MATRICES, 2017, 11 (03): : 639 - 667
  • [6] Solutions to some systems of adjointable operator equations over Hilbert C*-modules
    Moghani, Zahra Niazi
    Khanehgir, Mahnaz
    [J]. TBILISI MATHEMATICAL JOURNAL, 2019, 12 (03) : 93 - 107
  • [7] Hilbert modules characterization for weak hyperrigid operator systems
    P. Shankar
    A. K. Vijayarajan
    [J]. The Journal of Analysis, 2020, 28 : 905 - 912
  • [8] Hilbert modules characterization for weak hyperrigid operator systems
    Shankar, P.
    Vijayarajan, A. K.
    [J]. JOURNAL OF ANALYSIS, 2020, 28 (04): : 905 - 912
  • [9] Solutions to Operator Equations on Hilbert C*-Modules II
    Xiaochun Fang
    Jing Yu
    [J]. Integral Equations and Operator Theory, 2010, 68 : 23 - 60
  • [10] OPERATOR-VALUED MAPS ON HILBERT C*-MODULES
    Asadi, Mohammad B.
    Behmani, Reza
    Medghalchi, Ali R.
    Nikpey, Hamed
    [J]. OPERATORS AND MATRICES, 2017, 11 (03): : 769 - 776