Minimax D-optimal designs of contingent valuation experiments: willingness to pay for environmentally friendly clothes

被引:1
|
作者
Fackle-Fornius, Ellinor [1 ]
Wanstrom, Linda Anna [2 ]
机构
[1] Stockholm Univ, Dept Stat, S-10691 Stockholm, Sweden
[2] Linkoping Univ, Div Stat, Dept Informat & Comp Sci, S-58183 Linkoping, Sweden
基金
瑞典研究理事会;
关键词
minimax optimal design; contingent valuation experiment; logistic model; trinomial spike model; H-algorithm;
D O I
10.1080/02664763.2013.858670
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper demonstrates how to plan a contingent valuation experiment to assess the value of ecologically produced clothes. First, an appropriate statistical model (the trinomial spike model) that describes the probability that a randomly selected individual will accept any positive bid, and if so, will accept the bid A, is defined. Secondly, an optimization criterion that is a function of the variances of the parameter estimators is chosen. However, the variances of the parameter estimators in this model depend on the true parameter values. Pilot study data are therefore used to obtain estimates of the parameter values and a locally optimal design is found. Because this design is only optimal given that the estimated parameter values are correct, a design that minimizes the maximum of the criterion function over a plausable parameter region (i.e. a minimax design) is then found.
引用
收藏
页码:895 / 908
页数:14
相关论文
共 38 条
  • [1] Minimax D-optimal designs for the logistic model
    King, J
    Wong, WK
    [J]. BIOMETRICS, 2000, 56 (04) : 1263 - 1267
  • [2] D-optimal minimax fractional factorial designs
    Lin, Dennis K. J.
    Zhou, Julie
    [J]. CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2013, 41 (02): : 325 - 340
  • [3] OPTIMAL DESIGNS OF DISCRETE RESPONSE EXPERIMENTS IN CONTINGENT VALUATION STUDIES
    NYQUIST, H
    [J]. REVIEW OF ECONOMICS AND STATISTICS, 1992, 74 (03) : 559 - 563
  • [4] D-OPTIMAL DESIGNS OF EXPERIMENTS WITH NONINTERACTING FACTORS
    SCHWABE, R
    WIERICH, W
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 1995, 44 (03) : 371 - 384
  • [5] SEQUENCES CONVERGING TO D-OPTIMAL DESIGNS OF EXPERIMENTS
    ATWOOD, CL
    [J]. ANNALS OF STATISTICS, 1973, 1 (02): : 342 - 352
  • [6] D-optimal minimax regression designs on discrete design space
    Zhou, Julie
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2008, 138 (12) : 4081 - 4092
  • [7] Minimax D-optimal designs for item response theory models
    Berger, MPF
    King, CYJ
    Wong, WK
    [J]. PSYCHOMETRIKA, 2000, 65 (03) : 377 - 390
  • [8] Minimax d-optimal designs for item response theory models
    Martijn P. F. Berger
    C. Y. Joy King
    Weng Kee Wong
    [J]. Psychometrika, 2000, 65 : 377 - 390
  • [9] LOCALLY D-OPTIMAL DESIGNS FOR HIERARCHICAL RESPONSE EXPERIMENTS
    Ai, Mingyao
    Ye, Zhiqiang
    Yu, Jun
    [J]. STATISTICA SINICA, 2023, 33 (01) : 381 - 399
  • [10] MONOTONE SEQUENTIAL GENERATION OF D-OPTIMAL DESIGNS OF EXPERIMENTS
    ATWOOD, CL
    [J]. ANNALS OF MATHEMATICAL STATISTICS, 1971, 42 (06): : 2199 - &