Comparing transformation methods for DNA microarray data

被引:9
|
作者
Thygesen, HH [1 ]
Zwinderman, AH [1 ]
机构
[1] Univ Amsterdam, Acad Med Centrum, NL-1100 DD Amsterdam, Netherlands
关键词
Reference Signal; Transformation Method; Variance Ratio; Baseline Shift; Simple Permutation;
D O I
10.1186/1471-2105-5-77
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Background: When DNA microarray data are used for gene clustering, genotype/phenotype correlation studies, or tissue classification the signal intensities are usually transformed and normalized in several steps in order to improve comparability and signal/noise ratio. These steps may include subtraction of an estimated background signal, subtracting the reference signal, smoothing ( to account for nonlinear measurement effects), and more. Different authors use different approaches, and it is generally not clear to users which method they should prefer. Results: We used the ratio between biological variance and measurement variance (which is an F-like statistic) as a quality measure for transformation methods, and we demonstrate a method for maximizing that variance ratio on real data. We explore a number of transformations issues, including Box-Cox transformation, baseline shift, partial subtraction of the log-reference signal and smoothing. It appears that the optimal choice of parameters for the transformation methods depends on the data. Further, the behavior of the variance ratio, under the null hypothesis of zero biological variance, appears to depend on the choice of parameters. Conclusions: The use of replicates in microarray experiments is important. Adjustment for the null-hypothesis behavior of the variance ratio is critical to the selection of transformation method.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Comparing microarray data: What technology is needed?
    Hollon, T
    JOURNAL OF THE NATIONAL CANCER INSTITUTE, 2001, 93 (15) : 1126 - 1127
  • [22] Comparing Clustering Techniques for Real Microarray Data
    Gazi, Vilda Purutcuoglu
    Kayis, Elif
    2012 IEEE/ACM INTERNATIONAL CONFERENCE ON ADVANCES IN SOCIAL NETWORKS ANALYSIS AND MINING (ASONAM), 2012, : 788 - 791
  • [23] Comprehensive evaluation of matrix factorization methods for the analysis of DNA microarray gene expression data
    Kim, Mi Hyeon
    Seo, Hwa Jeong
    Joung, Je-Gun
    Kim, Ju Han
    BMC BIOINFORMATICS, 2011, 12
  • [24] Graphical methods for class prediction using dimension reduction techniques on DNA microarray data
    Bura, E
    Pfeiffer, RM
    BIOINFORMATICS, 2003, 19 (10) : 1252 - 1258
  • [25] Using SVD and SVM methods for selection, classification, clustering and modeling of DNA microarray data
    Simek, K
    Fujarewicz, K
    Swierniak, A
    Kimmel, M
    Jarzab, B
    Wiench, M
    Rzeszowska, J
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2004, 17 (04) : 417 - 427
  • [26] Comprehensive evaluation of matrix factorization methods for the analysis of DNA microarray gene expression data
    Mi Hyeon Kim
    Hwa Jeong Seo
    Je-Gun Joung
    Ju Han Kim
    BMC Bioinformatics, 12
  • [27] Feature extraction for DNA microarray data
    Liu, Yihui
    Twentieth IEEE International Symposium on Computer-Based Medical Systems, Proceedings, 2007, : 371 - 376
  • [28] Analysis of DNA microarray expression data
    Simon, Richard
    BEST PRACTICE & RESEARCH CLINICAL HAEMATOLOGY, 2009, 22 (02) : 271 - 282
  • [29] Ozone compromises DNA microarray data
    Butkus, Benjamin D.
    Biophotonics International, 2003, 10 (09): : 25 - 26
  • [30] Statistical methods and microarray data - Reply
    Shi, Leming
    Jones, Wendell D.
    Jensen, Roderick V.
    Wolfinger, Russell D.
    Kawasaki, Ernest S.
    Herman, Damir
    Guo, Lei
    Goodsaid, Federico M.
    Tong, Weida
    NATURE BIOTECHNOLOGY, 2007, 25 (01) : 26 - 27