Ideal saturated MHD helical structures in axisymmetric hybrid plasmas

被引:18
|
作者
Brunetti, D. [1 ]
Graves, J. P. [1 ]
Cooper, W. A. [1 ]
Terranova, D. [2 ]
机构
[1] Ecole Polytech Fed Lausanne, Assoc Euratom Confederat Suisse, Ctr Rech Phys Plasmas, CH-1015 Lausanne, Switzerland
[2] EURATOM ENEA Assoc, Consorzio RFX, I-35127 Padua, Italy
基金
瑞士国家科学基金会;
关键词
plasma; tokamak; RFP; MHD; INTERNAL KINK MODES; NONLINEAR EVOLUTION; TOROIDAL GEOMETRY; Q PROFILES; TOKAMAKS; EQUILIBRIA; OSCILLATIONS; STABILITY;
D O I
10.1088/0029-5515/54/6/064017
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Kinked saturated m = 1 helical structures are frequently observed in tokamak hybrid plasmas and in reversed field pinches (RFP). These modes occur when an extremum in the safety factor is close to, but necessarily resonant with, a low order rational (typically q(min) approximate to 1/1 in tokamaks, and q(max) approximate to 1/7 in RFPs). If the exact resonance can be avoided, the essential character of these modes can be modelled assuming ideal nested magnetic flux surfaces. The methods used to characterize these structures include linear and nonlinear ideal magnetohydrodynamic stability calculations, which evaluate the departure from an axisymmetric plasma state, or equilibrium calculations using a 3D equilibrium code. The extent to which these approaches agree in tokamaks and reverse field pinches is investigated, and compared favourably for the first time with an analytic nonlinear treatment that is valid for arbitrary toroidal mode number.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] STABILITY OF DOUBLET-III PLASMAS AGAINST AXISYMMETRIC RESISTIVE MHD MODES
    MCLAIN, FW
    JENSEN, TH
    JOURNAL OF PLASMA PHYSICS, 1981, 26 (DEC) : 431 - 440
  • [42] A NEW APPROACH TO THE ANALYSIS OF AXISYMMETRIC MHD EQUILIBRIA IN NON-CIRCULAR PLASMAS
    BOBBIO, S
    COCCORESE, E
    MARTONE, R
    ALTA FREQUENZA, 1982, 51 (02): : 71 - 79
  • [43] Free-plasma-boundary solver for axisymmetric ideal MHD equilibria with flow
    Torija Daza, G. F.
    Reynolds-Barredo, J. M.
    Sanchez, R.
    Loarte, A.
    Huijsmans, G.
    NUCLEAR FUSION, 2022, 62 (12)
  • [44] Non-axisymmetric ideal equilibrium and stability of ITER plasmas with rotating RMPs
    Ham, C. J.
    Cramp, R. G. J.
    Gibson, S.
    Lazerson, S. A.
    Chapman, I. T.
    Kirk, A.
    NUCLEAR FUSION, 2016, 56 (08)
  • [45] Helically symmetric equilibria for some ideal and resistive MHD plasmas with incompressible flows
    S. M. Moawad
    O. H. El-Kalaawy
    H. M. Shaker
    Applied Mathematics-A Journal of Chinese Universities, 2023, 38 : 192 - 209
  • [46] Ideal MHD stability of double barrier plasmas in DIII-D transport
    Li, G. Q.
    Wang, S. J.
    Lao, L. L.
    Turnbull, A. D.
    Chu, M. S.
    Brennan, D. P.
    Groebner, R. J.
    Zhao, L.
    NUCLEAR FUSION, 2008, 48 (01)
  • [47] Helically symmetric equilibria for some ideal and resistive MHD plasmas with incompressible flows
    S.M.Moawad
    O.H.El-Kalaawy
    H.M.Shaker
    Applied Mathematics:A Journal of Chinese Universities, 2023, 38 (02) : 192 - 209
  • [48] Revisit of Alfven ballooningmodes in isotropic, ideal MHD plasmas: Effect of diamagnetic condition
    Ma, John Z. G.
    Hirose, Akira
    JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2014, 119 (04) : 2894 - 2916
  • [49] SPATIAL LANDAU DAMPING IN IDEAL MHD .2. APPLICATION TO LABORATORY PLASMAS
    GROSSMAN.W
    TATARONI.J
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1972, 17 (11): : 1052 - 1052
  • [50] Helically symmetric equilibria for some ideal and resistive MHD plasmas with incompressible flows
    Moawad, S. M.
    El-Kalaawy, O. H.
    Shaker, H. M.
    APPLIED MATHEMATICS-A JOURNAL OF CHINESE UNIVERSITIES SERIES B, 2023, 38 (02) : 192 - 209