Ideal saturated MHD helical structures in axisymmetric hybrid plasmas

被引:18
|
作者
Brunetti, D. [1 ]
Graves, J. P. [1 ]
Cooper, W. A. [1 ]
Terranova, D. [2 ]
机构
[1] Ecole Polytech Fed Lausanne, Assoc Euratom Confederat Suisse, Ctr Rech Phys Plasmas, CH-1015 Lausanne, Switzerland
[2] EURATOM ENEA Assoc, Consorzio RFX, I-35127 Padua, Italy
基金
瑞士国家科学基金会;
关键词
plasma; tokamak; RFP; MHD; INTERNAL KINK MODES; NONLINEAR EVOLUTION; TOROIDAL GEOMETRY; Q PROFILES; TOKAMAKS; EQUILIBRIA; OSCILLATIONS; STABILITY;
D O I
10.1088/0029-5515/54/6/064017
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Kinked saturated m = 1 helical structures are frequently observed in tokamak hybrid plasmas and in reversed field pinches (RFP). These modes occur when an extremum in the safety factor is close to, but necessarily resonant with, a low order rational (typically q(min) approximate to 1/1 in tokamaks, and q(max) approximate to 1/7 in RFPs). If the exact resonance can be avoided, the essential character of these modes can be modelled assuming ideal nested magnetic flux surfaces. The methods used to characterize these structures include linear and nonlinear ideal magnetohydrodynamic stability calculations, which evaluate the departure from an axisymmetric plasma state, or equilibrium calculations using a 3D equilibrium code. The extent to which these approaches agree in tokamaks and reverse field pinches is investigated, and compared favourably for the first time with an analytic nonlinear treatment that is valid for arbitrary toroidal mode number.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Helical Flow Structures in Torus Plasmas
    Kosuga, Y.
    FRONT-RUNNERS' SYMPOSIUM ON PLASMA PHYSICS IN HONOR OF PROFESSORS KIMITAKA ITOH AND SANAE-I. ITOH, 2018, 1993
  • [22] Ion temperature gradient turbulence in helical and axisymmetric RFP plasmas
    Predebon, I.
    Xanthopoulos, P.
    PHYSICS OF PLASMAS, 2015, 22 (05)
  • [23] IDEAL-MHD STABILITY OF FINITE-BETA PLASMAS
    COPPI, B
    FERREIRA, A
    MARK, JWK
    RAMOS, JJ
    NUCLEAR FUSION, 1979, 19 (06) : 715 - 725
  • [24] Axisymmetric nonlinear waves and structures in Hall plasmas
    Islam, Tanim
    PHYSICS OF PLASMAS, 2012, 19 (06)
  • [25] Axisymmetric Waves in Fluid Saturated Porous Structures
    Karpfinger, F.
    Gurevich, B.
    Bakulin, A.
    PORO-MECHANICS IV, 2009, : 625 - +
  • [26] ON THE NUMERICAL DETERMINATION OF IDEAL MHD LIMITS OF STABILITY OF AXISYMMETRIC TOROIDAL CONFIGURATIONS
    GRUBER, R
    PFERSISCH, C
    SEMENZATO, S
    TROYON, F
    TSUNEMATSU, T
    COMPUTER PHYSICS COMMUNICATIONS, 1981, 24 (3-4) : 381 - 387
  • [27] LINEAR-STABILITY OF AXISYMMETRIC MHD EQUILIBRIA TO IDEAL AND RESISTIVE INSTABILITIES
    HEWETT, DW
    HEWITT, T
    FREIDBERG, JP
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1979, 24 (08): : 974 - 975
  • [28] The direct criterion of Newcomb for the ideal MHD stability of an axisymmetric toroidal plasma
    Glasser, A. H.
    PHYSICS OF PLASMAS, 2016, 23 (07)
  • [29] Coupled MHD - Hybrid Simulations of Space Plasmas
    Moschou, S. P.
    Sokolov, I., V
    Cohen, O.
    Toth, G.
    Drake, J. J.
    Huang, Z.
    Garraffo, C.
    Alvarado-Gomez, J. D.
    Gombosi, T.
    14TH INTERNATIONAL CONFERENCE ON NUMERICAL MODELING OF SPACE PLASMA FLOWS (ASTRONUM-2019), 2020, 1623
  • [30] RESONANT STRUCTURES WITHIN INCOMPRESSIBLE IDEAL MHD
    ZORZAN, C
    CALLY, PS
    JOURNAL OF PLASMA PHYSICS, 1992, 47 : 321 - 347