EM parameter estimation for a piecewise AR

被引:0
|
作者
Fayolle, M
Idier, J
机构
来源
1997 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS I - V: VOL I: PLENARY, EXPERT SUMMARIES, SPECIAL, AUDIO, UNDERWATER ACOUSTICS, VLSI; VOL II: SPEECH PROCESSING; VOL III: SPEECH PROCESSING, DIGITAL SIGNAL PROCESSING; VOL IV: MULTIDIMENSIONAL SIGNAL PROCESSING, NEURAL NETWORKS - VOL V: STATISTICAL SIGNAL AND ARRAY PROCESSING, APPLICATIONS | 1997年
关键词
D O I
暂无
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
We design a model meant to be the equivalent of Blake's weak string but in the probabilistic framework. Independent line sites delimit piecewise stationary Gaussian autoregressives AR(1) corrupted with Gaussian white noise. Thanks to the Bayesian interpretation, we define the joint probability which in turn yields the likelihood. We demonstrate how to make its computation possible in cubic time. This calculation allows the set of parameters to be tested but not estimated due to the complex form of the criterion. Yet the computations done so far provide the materials for an iterative maximization. Indeed, the Expectation Maximization algorithm happens to match the features of this model and is also easily calculable. When the likelihood is known, the cost of one step of the latter algorithm is negligible in comparison with the previous calculations.
引用
收藏
页码:3545 / 3548
页数:4
相关论文
共 50 条
  • [41] Ar model parameter estimation: From factor graphs to algorithms
    Korl, S
    Loeliger, HA
    Lindgren, AG
    2004 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOL V, PROCEEDINGS: DESIGN AND IMPLEMENTATION OF SIGNAL PROCESSING SYSTEMS INDUSTRY TECHNOLOGY TRACKS MACHINE LEARNING FOR SIGNAL PROCESSING MULTIMEDIA SIGNAL PROCESSING SIGNAL PROCESSING FOR EDUCATION, 2004, : 509 - 512
  • [42] A delta MYWE algorithm for parameter estimation of noisy AR processes
    Li, Q
    Fan, H
    Karlsson, E
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1996, 44 (05) : 1300 - 1303
  • [43] PARAMETER-ESTIMATION OF DEPENDENCE TREE MODELS USING THE EM ALGORITHM
    RONEN, O
    ROHLICEK, JR
    OSTENDORF, M
    IEEE SIGNAL PROCESSING LETTERS, 1995, 2 (08) : 157 - 159
  • [44] Approximate EM algorithms for parameter and state estimation in nonlinear stochastic models
    Goodwin, Graham C.
    Aguero, Juan C.
    2005 44TH IEEE CONFERENCE ON DECISION AND CONTROL & EUROPEAN CONTROL CONFERENCE, VOLS 1-8, 2005, : 368 - 373
  • [46] Parameter estimation of incomplete data in competing risks using the EM algorithm
    Park, C
    IEEE TRANSACTIONS ON RELIABILITY, 2005, 54 (02) : 282 - 290
  • [47] Parameter estimation of Markov switching bilinear model using the (EM) algorithm
    Maaziz, M.
    Kharfouchi, S.
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2018, 192 : 35 - 44
  • [48] Parameter estimation of kinetic rates in stochastic reaction networks by the EM method
    Horvath, Andras
    Manini, Daniele
    BMEI 2008: PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON BIOMEDICAL ENGINEERING AND INFORMATICS, VOL 1, 2008, : 713 - 717
  • [49] Application of EM Algorithm in Parameter Estimation of p‑Norm Mixture Model
    Peng F.
    Wang Z.
    Meng Q.
    Pan X.
    Qiu F.
    Yang Y.
    Wuhan Daxue Xuebao (Xinxi Kexue Ban)/Geomatics and Information Science of Wuhan University, 2022, 47 (09): : 1432 - 1438
  • [50] Structure detection and parameter estimation for NARX models in a unified EM framework
    Baldacchino, Tara
    Anderson, Sean R.
    Kadirkamanathan, Visakan
    AUTOMATICA, 2012, 48 (05) : 857 - 865