Parameter estimation of Markov switching bilinear model using the (EM) algorithm

被引:2
|
作者
Maaziz, M. [1 ]
Kharfouchi, S. [2 ]
机构
[1] Rabeh Bitat Univ, Exact Sci & Informat Dept, ENS Constantine, Constantine, Algeria
[2] Rabeh Bitat Univ, Fac Med, Constantine, Algeria
关键词
Markov-switching; Bilinear models; (EM) algorithm; Maximum likelihood; MAXIMUM-LIKELIHOOD-ESTIMATION; GARCH MODEL; SERIES; STATIONARITY; REGIME; LYNX;
D O I
10.1016/j.jspi.2017.07.002
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Markov Switching models have known a strong growth since their introduction by James Hamilton in the late 1980's. These models are used as an essential tool for the analysis of the economic cycles. In this paper, we are interested in a class of bilinear models with markov-switching regime (MS - BL). These models first appeared in Bibi and Aknouche (2010). Parameter estimation via maximum likelihood (ML) of the (MS - BL) model has been considered in Bibi and Ghazel (2015). However, construction and numerical maximization in the approach proposed by Bibi and Ghazel (2015) are computationally intractable. Hence, we propose an expectation-maximization (EM) procedure that provides an alternative method for maximizing the likelihood function in such situations. Convergence and consistency of the (EM) algorithm are discussed in this context. Finally, a Monte Carlo study is presented and two real data examples are proposed. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:35 / 44
页数:10
相关论文
共 50 条
  • [1] FILTERED EM ALGORITHM FOR JOINT HIDDEN MARKOV MODEL AND SINUSOIDAL PARAMETER-ESTIMATION
    KRISHNAMURTHY, V
    ELLIOTT, RJ
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1995, 43 (01) : 353 - 358
  • [2] Item parameter estimation for a continuous response model using an EM algorithm
    Wang, TY
    Zeng, LJ
    [J]. APPLIED PSYCHOLOGICAL MEASUREMENT, 1998, 22 (04) : 333 - 344
  • [3] Parameter Estimation of the Reduced RUM Using the EM Algorithm
    Feng, Yuling
    Habing, Brian T.
    Huebner, Alan
    [J]. APPLIED PSYCHOLOGICAL MEASUREMENT, 2014, 38 (02) : 137 - 150
  • [4] Parameter estimation in double-truncated Markov Switching Model
    Ye, J
    Liu, YB
    [J]. Proceedings of the Second International Conference on Information and Management Sciences, 2002, 2 : 121 - 126
  • [5] Robust Identification of Switching Markov ARX Models Using EM Algorithm
    Fan, Lei
    Kodamana, Hariprasad
    Huang, Biao
    [J]. IFAC PAPERSONLINE, 2017, 50 (01): : 9772 - 9777
  • [6] Improved Initialization of the EM Algorithm for Mixture Model Parameter Estimation
    Panic, Branislav
    Klemenc, Jernej
    Nagode, Marko
    [J]. MATHEMATICS, 2020, 8 (03)
  • [8] Parameter estimation for spatial random trees using the EM algorithm
    Pollak, I
    Siskind, JM
    Harper, MP
    Bouman, CA
    [J]. 2003 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOL 1, PROCEEDINGS, 2003, : 257 - 260
  • [9] PARAMETER-ESTIMATION OF SUPERIMPOSED SIGNALS USING THE EM ALGORITHM
    FEDER, M
    WEINSTEIN, E
    [J]. IEEE TRANSACTIONS ON ACOUSTICS SPEECH AND SIGNAL PROCESSING, 1988, 36 (04): : 477 - 489
  • [10] Recursive parameter estimation algorithm of the Dirichlet hidden Markov model
    Vaiciulyte, Jurate
    Sakalauskas, Leonidas
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2020, 90 (02) : 306 - 323