Resource Costs for Fault-Tolerant Linear Optical Quantum Computing

被引:88
|
作者
Li, Ying [1 ]
Humphreys, Peter C. [2 ]
Mendoza, Gabriel J. [3 ,4 ]
Benjamin, Simon C. [1 ]
机构
[1] Univ Oxford, Dept Mat, Oxford OX1 3PH, England
[2] Univ Oxford, Dept Phys, Clarendon Lab, Oxford OX1 3PH, England
[3] Univ Bristol, Ctr Quantum Photon, HH Wills Phys Lab, Bristol BS8 1UB, Avon, England
[4] Univ Bristol, Dept Elect & Elect Engn, Bristol BS8 1UB, Avon, England
来源
PHYSICAL REVIEW X | 2015年 / 5卷 / 04期
基金
英国工程与自然科学研究理事会;
关键词
COMPUTATION; CIRCUIT; ENTANGLEMENT; EFFICIENT; ARRAY;
D O I
10.1103/PhysRevX.5.041007
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Linear optical quantum computing (LOQC) seems attractively simple: Information is borne entirely by light and processed by components such as beam splitters, phase shifters, and detectors. However, this very simplicity leads to limitations, such as the lack of deterministic entangling operations, which are compensated for by using substantial hardware overheads. Here, we quantify the resource costs for full-scale LOQC by proposing a specific protocol based on the surface code. With the caveat that our protocol can be further optimized, we report that the required number of physical components is at least 5 orders of magnitude greater than in comparable matter-based systems. Moreover, the resource requirements grow further if the per-component photon-loss rate is worse than 10(-3) or the per-component noise rate is worse than 10(-5). We identify the performance of switches in the network as the single most influential factor influencing resource scaling.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] Experimental magic state distillation for fault-tolerant quantum computing
    Souza, Alexandre M.
    Zhang, Jingfu
    Ryan, Colm A.
    Laflamme, Raymond
    [J]. NATURE COMMUNICATIONS, 2011, 2
  • [42] Implementing a strand of a scalable fault-tolerant quantum computing fabric
    Chow, Jerry M.
    Gambetta, Jay M.
    Magesan, Easwar
    Abraham, David W.
    Cross, Andrew W.
    Johnson, B. R.
    Masluk, Nicholas A.
    Ryan, Colm A.
    Smolin, John A.
    Srinivasan, Srikanth J.
    Steffen, M.
    [J]. NATURE COMMUNICATIONS, 2014, 5
  • [43] Upper bounds on the noise threshold for fault-tolerant quantum computing
    Kempe, Julia
    Regev, Oded
    Unger, Falk
    de Wolf, Ronald
    [J]. AUTOMATA, LANGUAGES AND PROGRAMMING, PT 1, PROCEEDINGS, 2008, 5125 : 845 - +
  • [44] Experimental magic state distillation for fault-tolerant quantum computing
    Alexandre M. Souza
    Jingfu Zhang
    Colm A. Ryan
    Raymond Laflamme
    [J]. Nature Communications, 2
  • [45] Fault-Tolerant Resource Reasoning
    Ntzik, Gian
    Pinto, Pedro da Rocha
    Gardner, Philippa
    [J]. PROGRAMMING LANGUAGES AND SYSTEMS, APLAS 2015, 2015, 9458 : 169 - 188
  • [46] Fault-Tolerant Coherent H∞ Control for Linear Quantum Systems
    Liu, Yanan
    Dong, Daoyi
    Petersen, Ian R.
    Gao, Qing
    Ding, Steven X.
    Yokoyama, Shota
    Yonezawa, Hidehiro
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2022, 67 (10) : 5087 - 5101
  • [47] Fault-tolerant quantum repeater with atomic ensembles and linear optics
    Chen, Zeng-Bing
    Zhao, Bo
    Chen, Yu-Ao
    Schmiedmayer, Joerg
    Pan, Jian-Wei
    [J]. PHYSICAL REVIEW A, 2007, 76 (02):
  • [48] Fault-tolerant quantum metrology
    Kapourniotis, Theodoros
    Datta, Animesh
    [J]. PHYSICAL REVIEW A, 2019, 100 (02)
  • [49] INTELLIGENT FAULT-TOLERANT CONTROL OF LINEAR DRIVES USING SOFT COMPUTING
    Huang, Sunan
    Xiao, Mingbo
    Tan, Kok K.
    [J]. INTERNATIONAL JOURNAL OF ROBOTICS & AUTOMATION, 2015, 30 (05): : 471 - 481
  • [50] Fault-tolerant quantum computation
    Shor, PW
    [J]. 37TH ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, PROCEEDINGS, 1996, : 56 - 65