Resource Costs for Fault-Tolerant Linear Optical Quantum Computing

被引:88
|
作者
Li, Ying [1 ]
Humphreys, Peter C. [2 ]
Mendoza, Gabriel J. [3 ,4 ]
Benjamin, Simon C. [1 ]
机构
[1] Univ Oxford, Dept Mat, Oxford OX1 3PH, England
[2] Univ Oxford, Dept Phys, Clarendon Lab, Oxford OX1 3PH, England
[3] Univ Bristol, Ctr Quantum Photon, HH Wills Phys Lab, Bristol BS8 1UB, Avon, England
[4] Univ Bristol, Dept Elect & Elect Engn, Bristol BS8 1UB, Avon, England
来源
PHYSICAL REVIEW X | 2015年 / 5卷 / 04期
基金
英国工程与自然科学研究理事会;
关键词
COMPUTATION; CIRCUIT; ENTANGLEMENT; EFFICIENT; ARRAY;
D O I
10.1103/PhysRevX.5.041007
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Linear optical quantum computing (LOQC) seems attractively simple: Information is borne entirely by light and processed by components such as beam splitters, phase shifters, and detectors. However, this very simplicity leads to limitations, such as the lack of deterministic entangling operations, which are compensated for by using substantial hardware overheads. Here, we quantify the resource costs for full-scale LOQC by proposing a specific protocol based on the surface code. With the caveat that our protocol can be further optimized, we report that the required number of physical components is at least 5 orders of magnitude greater than in comparable matter-based systems. Moreover, the resource requirements grow further if the per-component photon-loss rate is worse than 10(-3) or the per-component noise rate is worse than 10(-5). We identify the performance of switches in the network as the single most influential factor influencing resource scaling.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] Deterministic Fault-Tolerant Distributed Computing in Linear Time and Communication
    Chlebus, Bogdan S.
    Kowalski, Dariusz R.
    Olkowski, Jan
    [J]. PROCEEDINGS OF THE 2023 ACM SYMPOSIUM ON PRINCIPLES OF DISTRIBUTED COMPUTING, PODC 2023, 2023, : 344 - 354
  • [32] FAULT-TOLERANT COMPUTING - INTRODUCTION
    SCHERTZ, DR
    [J]. IEEE TRANSACTIONS ON COMPUTERS, 1974, C-23 (07) : 649 - 650
  • [33] FAULT-TOLERANT COMPUTING IN EUROPE
    KIRRMANN, H
    [J]. IEEE MICRO, 1989, 9 (02) : 5 - 7
  • [34] FAULT-TOLERANT COMPUTING - INTRODUCTION
    REDDY, SM
    [J]. IEEE TRANSACTIONS ON COMPUTERS, 1978, 27 (06) : 481 - 482
  • [35] FAULT-TOLERANT COMPUTING - INTRODUCTION
    MEYER, JF
    RAULT, JC
    [J]. IEEE TRANSACTIONS ON COMPUTERS, 1976, 25 (06) : 553 - 556
  • [36] FAULT-TOLERANT COMPUTING - OVERVIEW
    AVIZIENIS, A
    [J]. COMPUTER, 1971, 4 (01) : 5 - +
  • [37] UPPER BOUNDS ON THE NOISE THRESHOLD FOR FAULT-TOLERANT QUANTUM COMPUTING
    Kempe, Julia
    Regev, Oded
    Unger, Falk
    de Wolf, Ronald
    [J]. QUANTUM INFORMATION & COMPUTATION, 2010, 10 (5-6) : 361 - 376
  • [38] Nonuniform code concatenation for universal fault-tolerant quantum computing
    Nikahd, Eesa
    Sedighi, Mehdi
    Zamani, Morteza Saheb
    [J]. PHYSICAL REVIEW A, 2017, 96 (03)
  • [39] Implementing a strand of a scalable fault-tolerant quantum computing fabric
    Jerry M. Chow
    Jay M. Gambetta
    Easwar Magesan
    David W. Abraham
    Andrew W. Cross
    B R Johnson
    Nicholas A. Masluk
    Colm A. Ryan
    John A. Smolin
    Srikanth J. Srinivasan
    M Steffen
    [J]. Nature Communications, 5
  • [40] Advancements towards Fault-Tolerant Quantum Computing with Neutral Atoms
    Bloom, Benjamin
    [J]. QUANTUM INFORMATION SCIENCE, SENSING, AND COMPUTATION XVI, 2024, 13028