Asymptotic bifurcation and second order elliptic equations on RN

被引:6
|
作者
Stuart, C. A. [1 ]
机构
[1] Ecole Polytech Fed Lausanne, Sect Math, Stn 8, CH-1015 Lausanne, Switzerland
关键词
Asymptotic linearity; Asymptotic bifurcation; Nonlinear elliptic equation; DIFFERENTIABILITY; LINEARITY; BRANCH;
D O I
10.1016/j.anihpc.2014.09.003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper deals with asymptotic bifurcation, first in the abstract setting of an equation G(u) = lambda u, where G acts between real Hilbert spaces and lambda is an element of R, and then for square-integrable solutions of a second order non-linear elliptic equation on R-N. The novel feature of this work is that G is not required to be asymptotically linear in the usual sense since this condition is not appropriate for the application to the elliptic problem. Instead, G is only required to be Hadamard asymptotically linear and we give conditions ensuring that there is asymptotic bifurcation at eigenvalues of odd multiplicity of the H-asymptotic derivative which are sufficiently far from the essential spectrum. The latter restriction is justified since we also show that for some elliptic equations there is no asymptotic bifurcation at a simple eigenvalue of the H-asymptotic derivative if it is too close to the essential spectrum. (C) 2014 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:1259 / 1281
页数:23
相关论文
共 50 条