Existence and asymptotic properties of singular solutions of nonlinear elliptic equations in Rn\{0}

被引:0
|
作者
Bachar, Imed [1 ]
Aljarallah, Entesar [2 ]
机构
[1] King Saud Univ, Coll Sci, Math Dept, POB 2455, Riyadh 11451, Saudi Arabia
[2] Jouf Univ, Coll Sci, Math Dept, POB 2014, Sakaka 72338, Saudi Arabia
来源
BOUNDARY VALUE PROBLEMS | 2022年 / 2022卷 / 01期
关键词
Slowly varying functions; Kato class; Asymptotic properties; Blow-up; POSITIVE SOLUTIONS; DIFFERENTIAL-EQUATIONS; UNIQUENESS; FRAMEWORK;
D O I
10.1186/s13661-022-01584-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the following singular semilinear problem {Delta u(x) + p(x)u(gamma) = 0, x is an element of D (in the distributional sense), u > 0, in D, lim(vertical bar x vertical bar -> 0) vertical bar x vertical bar(n-2 )u(x) = 0, lim(vertical bar x vertical bar ->infinity) u(x) = 0, where gamma < 1, D = R-n \ {0} (n >= 3) and p is a positive continuous function in D, which may be singular at x = 0. Under sufficient conditions for the weighted function p(x), we prove the existence of a positive continuous solution on D, which could blow-up at the origin. The global asymptotic behavior of this solution is also obtained.
引用
收藏
页数:19
相关论文
共 50 条