Bounds on singular values revealed by QR factorizations

被引:21
|
作者
Pan, CT
Tang, PTP
机构
[1] No Illinois Univ, Dept Math Sci, De Kalb, IL 60115 USA
[2] Intel Corp, Computat Software Lab, Santa Clara, CA 94502 USA
来源
BIT | 1999年 / 39卷 / 04期
关键词
rank-revealing QR factorization; singular value; cyclic column pivoting;
D O I
10.1023/A:1022395308695
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We introduce a pair of dual concepts: pivoted blocks and reverse pivoted blocks. These blocks are the outcome of a special column pivoting strategy in QR factorization. Our main result is that under such a column pivoting strategy, the QR factorization of a given matrix can give tight estimates of any two a priori-chosen consecutive singular values of that matrix. In particular, a rank-revealing QR factorization is guaranteed when the two chosen consecutive singular values straddle a gap in the singular value spectrum that gives rise to the rank degeneracy of the given matrix. The pivoting strategy, called cyclic pivoting, can be viewed as a generalization of Golub's column pivoting and Stewart's reverse column pivoting. Numerical experiments confirm the tight estimates that our theory asserts. AMS subject classification: 65F30, 15A23, 15A42, 15A15.
引用
收藏
页码:740 / 756
页数:17
相关论文
共 50 条