Bounds for the singular values of a matrix involving its sparsity pattern

被引:0
|
作者
Kolotilina L.Yu. [1 ]
机构
[1] St.Petersburg Department, Steklov Mathematical Institute, St.Petersburg
基金
俄罗斯基础研究基金会;
关键词
Lower Bound; Hermitian Matrix; Nonnegative Matrix; Sparsity Pattern; Arbitrary Matrix;
D O I
10.1007/s10958-006-0278-4
中图分类号
学科分类号
摘要
The paper presents new upper and lower bounds for the singular values of rectangularmatrices explicitly involving the matrix sparsity pattern. These bounds are based on an upper bound for the Perron root of a nonnegative matrix and on the sparsity-dependent version of the Ostrowski-Brauer theorem on eigenvalue inclusion regions. Bibliography: 7 titles. © 2006 Springer Science+Business Media, Inc.
引用
收藏
页码:4794 / 4800
页数:6
相关论文
共 50 条