Convergence Rates for Linear Inverse Problems in the Presence of an Additive Normal Noise

被引:13
|
作者
Hofinger, Andreas [1 ]
Pikkarainen, Hanna K. [1 ]
机构
[1] Austrian Acad Sci, Johann Radon Inst Computat & Appl Math, A-4040 Linz, Austria
基金
美国国家科学基金会;
关键词
Convergence rates; Linear inverse problems; Parameter choice rules; Statistical inversion theories; OPERATOR-EQUATIONS;
D O I
10.1080/07362990802558295
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work, we examine a finite-dimensional linear inverse problem where the measurements are disturbed by an additive normal noise. The problem is solved both in the frequentist and in the Bayesian frameworks. Convergence of the used methods when the noise tends to zero is studied in the Ky Fan metric. The obtained convergence rate results and parameter choice rules are of a similar structure for both approaches.
引用
收藏
页码:240 / 257
页数:18
相关论文
共 50 条
  • [21] Convergence rates of Tikhonov regularizations for elliptic and parabolic inverse radiativity problems
    Chen, De-Han
    Jiang, Daijun
    Zou, Jun
    INVERSE PROBLEMS, 2020, 36 (07)
  • [22] Deep null space learning for inverse problems: convergence analysis and rates
    Schwab, Johannes
    Antholzer, Stephan
    Haltmeier, Markus
    INVERSE PROBLEMS, 2019, 35 (02)
  • [23] Convergence rates for the joint solution of inverse problems with compressed sensing data
    Ebner, Andrea
    Haltmeier, Markus
    INVERSE PROBLEMS, 2023, 39 (01)
  • [24] Convergence rates of general regularization methods for statistical inverse problems and applications
    Bissantz, N.
    Hohage, T.
    Munk, A.
    Ruymgaart, F.
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2007, 45 (06) : 2610 - 2636
  • [25] CONVERGENCE RATES FOR ILL-POSED INVERSE PROBLEMS WITH AN UNKNOWN OPERATOR
    Johannes, Jan
    Van Bellegem, Sebastien
    Vanhems, Anne
    ECONOMETRIC THEORY, 2011, 27 (03) : 522 - 545
  • [26] Worst case tractability of linear problems in the presence of noise: Linear information
    Plaskota, Leszek
    Siedlecki, Pawel
    JOURNAL OF COMPLEXITY, 2023, 79
  • [27] On the Convergence of Stochastic Gradient Descent for Linear Inverse Problems in Banach Spaces
    Jin, Bangti
    Kereta, Zeljko
    SIAM JOURNAL ON IMAGING SCIENCES, 2023, 16 (02): : 671 - 705
  • [28] A note on convergence of solutions of total variation regularized linear inverse problems
    Iglesias, Jose A.
    Mercier, Gwenael
    Scherzer, Otmar
    INVERSE PROBLEMS, 2018, 34 (05)
  • [29] On global normal linear approximations for nonlinear Bayesian inverse problems
    Nicholson, Ruanui
    Petra, Noemi
    Villa, Umberto
    Kaipio, Jari P.
    INVERSE PROBLEMS, 2023, 39 (05)
  • [30] Higher order convergence rates for Bregman iterated variational regularization of inverse problems
    Sprung, Benjamin
    Hohage, Thorsten
    NUMERISCHE MATHEMATIK, 2019, 141 (01) : 215 - 252