A note on convergence of solutions of total variation regularized linear inverse problems

被引:13
|
作者
Iglesias, Jose A. [1 ]
Mercier, Gwenael [1 ]
Scherzer, Otmar [1 ,2 ]
机构
[1] Austrian Acad Sci, Johann Radon Inst Computat & Appl Math RICAM, Linz, Austria
[2] Univ Vienna, Computat Sci Ctr, Vienna, Austria
基金
奥地利科学基金会;
关键词
inverse problems; total variation; regularization; source condition; density estimates;
D O I
10.1088/1361-6420/aab92a
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In a recent paper by Chambolle et al (2017 Inverse Problems 33 015002) it was proven that if the subgradient of the total variation at the noise free data is not empty, the level-sets of the total variation denoised solutions converge to the level-sets of the noise free data with respect to the Hausdorff distance. The condition on the subgradient corresponds to the source condition introduced by Burger and Usher (2007 Multiscale Model. Simul. 6 365-95), who proved convergence rates results with respect to the Bregman distance under this condition. We generalize the result of Chambolle et al to total variation regularization of general linear inverse problems under such a source condition. As particular applications we present denoising in bounded and unbounded, convex and non convex domains, deblurring and inversion of the circular Radon transform. In all these examples the convergence result applies. Moreover, we illustrate the convergence behavior through numerical examples.
引用
收藏
页数:28
相关论文
共 50 条
  • [1] Regularized total least squares approach for nonconvolutional linear inverse problems
    Zhu, WW
    Wang, Y
    Galatsanos, NP
    Zhang, J
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 1999, 8 (11) : 1657 - 1661
  • [2] STOCHASTIC CONVERGENCE OF REGULARIZED SOLUTIONS AND THEIR FINITE ELEMENT APPROXIMATIONS TO INVERSE SOURCE PROBLEMS
    CHEN, Z. H. I. M. I. N. G.
    ZHANG, W. E. N. L. O. N. G.
    ZOU, J. U. N.
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2022, 60 (02) : 751 - 780
  • [3] Regularization of linear inverse problems with total generalized variation
    Bredies, Kristian
    Holler, Martin
    [J]. JOURNAL OF INVERSE AND ILL-POSED PROBLEMS, 2014, 22 (06): : 871 - 913
  • [4] Total variation multiscale estimators for linear inverse problems
    del Alamo, Miguel
    Munk, Axel
    [J]. INFORMATION AND INFERENCE-A JOURNAL OF THE IMA, 2020, 9 (04) : 961 - 986
  • [5] Linear inverse problems with Hessian–Schatten total variation
    Luigi Ambrosio
    Shayan Aziznejad
    Camillo Brena
    Michael Unser
    [J]. Calculus of Variations and Partial Differential Equations, 2024, 63
  • [6] Towards Off-the-Grid Algorithms for Total Variation Regularized Inverse Problems
    De Castro, Yohann
    Duval, Vincent
    Petit, Romain
    [J]. JOURNAL OF MATHEMATICAL IMAGING AND VISION, 2023, 65 (01) : 53 - 81
  • [7] Towards Off-the-Grid Algorithms for Total Variation Regularized Inverse Problems
    Yohann De Castro
    Vincent Duval
    Romain Petit
    [J]. Journal of Mathematical Imaging and Vision, 2023, 65 : 53 - 81
  • [8] Exact solutions of infinite dimensional total-variation regularized problems
    Flinth, Axel
    Weiss, Pierre
    [J]. INFORMATION AND INFERENCE-A JOURNAL OF THE IMA, 2019, 8 (03) : 407 - 443
  • [9] Linear inverse problems with Hessian-Schatten total variation
    Ambrosio, Luigi
    Aziznejad, Shayan
    Brena, Camillo
    Unser, Michael
    [J]. CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2024, 63 (01)
  • [10] Convergence of an adaptive regularized method for a class of inverse problems
    SanchezAvila, C
    ArriagaGomez, F
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1996, 76 : 517 - 518