A new Bayesian test statistic is proposed to test a point null hypothesis based on a quadratic loss. The proposed test statistic may be regarded as the Bayesian version of the Lagrange multiplier test. Its asymptotic distribution is obtained based on a set of regular conditions and follows a chi-squared distribution when the null hypothesis is correct. The new statistic has several important advantages that make it appealing in practical applications. First, it is well-defined under improper prior distributions. Second, it avoids Jeffrey-Lindley's paradox. Third, it always takes a non-negative value and is relatively easy to compute, even for models with latent variables. Fourth, its numerical standard error is relatively easy to obtain. Finally, it is asymptotically pivotal and its threshold values can be obtained from the chi-squared distribution. The method is illustrated using some real examples in economics and finance. Crown Copyright (C) 2015 Published by Elsevier B.V. All rights reserved.
机构:
College of Mathematic and Statistics,Jishou University
School of Mathematical Sciences,Beijing Normal University
Department of Statistics,School of Mathematical Sciences,Capital Normal UniversityCollege of Mathematic and Statistics,Jishou University
HUANG Rui
CUI Hengjian
论文数: 0引用数: 0
h-index: 0
机构:
College of Mathematic and Statistics,Jishou University
School of Mathematical Sciences,Beijing Normal University
Department of Statistics,School of Mathematical Sciences,Capital Normal UniversityCollege of Mathematic and Statistics,Jishou University