Extending sliced inverse regression: the weighted chi-squared test

被引:111
|
作者
Bura, E [1 ]
Cook, RD
机构
[1] George Washington Univ, Dept Stat, Washington, DC 20052 USA
[2] Univ Minnesota, Sch Stat, St Paul, MN 55108 USA
关键词
dimension estimation; dimension reduction;
D O I
10.1198/016214501753208979
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Sliced inverse regression (SIR) and an associated chi-squared test for dimension have been introduced as a method for reducing the dimension of regression problems whose predictor variables are normal. In this article the assumptions on the predictor distribution, under which the chi-squared test was proved to apply, are relaxed, and the result is extended. A general weighted chi-squared test that does not require normal regressors for the dimension of a regression is given. Simulations show that the weighted chi-squared test is more reliable than the chi-squared test when the regressor distribution digresses from normality significantly, and that it compares well with the chi-squared test when the regressors are normal.
引用
收藏
页码:996 / 1003
页数:8
相关论文
共 50 条
  • [1] Sliced inverse moment regression using weighted chi-squared tests for dimension reduction
    Ye, Zhishen
    Yang, Jie
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2010, 140 (11) : 3121 - 3131
  • [2] Chi-squared test
    Turner, N
    [J]. JOURNAL OF CLINICAL NURSING, 2000, 9 (01) : 93 - 93
  • [3] Assessing corrections to the weighted chi-squared test for dimension
    Bura, E
    Cook, RD
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2003, 32 (01) : 127 - 146
  • [4] Nonstandard chi-squared test
    Bosgiraud, Jacques
    [J]. JOURNAL OF INFORMATION & OPTIMIZATION SCIENCES, 2005, 26 (02): : 443 - 470
  • [5] Contrast difference test and weighted sum of chi-squared variables
    Bayomog, S
    Guyon, X
    Hardouin, C
    Yao, JF
    [J]. CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 1996, 24 (01): : 115 - 130
  • [6] MISUSE OF CHI-SQUARED TEST
    RICH, H
    LUHBY, AL
    BABIKIAN, HM
    GORDON, M
    [J]. LANCET, 1974, 1 (7869): : 1294 - 1295
  • [7] PEARSON,KARL AND THE CHI-SQUARED TEST
    PLACKETT, RL
    [J]. INTERNATIONAL STATISTICAL REVIEW, 1983, 51 (01) : 59 - 72
  • [8] Pearson's chi-squared test
    Lydersen, Stian
    Fagerland, Morten Wang
    Laake, Petter
    [J]. TIDSSKRIFT FOR DEN NORSKE LAEGEFORENING, 2019, 139 (12) : 1183 - 1183
  • [9] BIAS OF THE PEARSON CHI-SQUARED TEST
    RAYNER, JCW
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 1985, 21 (3-4) : 329 - 331
  • [10] ON THE APPLICATION OF THE PEARSON TEST OF CHI-SQUARED
    VESSEREAU, A
    [J]. BULLETIN OF THE INTERNATIONAL STATISTICAL INSTITUTE, 1958, 36 (03): : 87 - 101