Some Orthogonal Polynomials in Four Variables

被引:0
|
作者
Dunkl, Charles F. [1 ]
机构
[1] Univ Virginia, Dept Math, Charlottesville, VA 22904 USA
关键词
nonsymmetric Jack polynomials;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The symmetric group on 4 letters has the reflection group D-3 as an isomorphic image. This fact follows from the coincidence of the root systems A(3) and D-3. The isomorphism is used to construct an orthogonal basis of polynomials of 4 variables with 2 parameters. There is an associated quantum Calogero-Sutherland model of 4 identical particles on the line.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] A new family of orthogonal polynomials in three variables
    Aktas, Rabia
    Area, Ivan
    Guldogan, Esra
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2020, 2020 (01)
  • [22] On linearly related orthogonal polynomials in several variables
    Manuel Alfaro
    Ana Peña
    Teresa E. Pérez
    M. Luisa Rezola
    Numerical Algorithms, 2014, 66 : 525 - 553
  • [23] A CLASS OF ORTHOGONAL POLYNOMIALS IN SEVERAL-VARIABLES
    ROZENBLYUM, AV
    ROZENBLYUM, LV
    DIFFERENTIAL EQUATIONS, 1982, 18 (10) : 1288 - 1293
  • [24] ORTHOGONAL POLYNOMIALS IN SEVERAL VARIABLES .2.
    WEISFELD, M
    SIAM REVIEW, 1965, 7 (04) : 620 - &
  • [25] Optimal approximants and orthogonal polynomials in several variables
    Sargent, Meredith
    Sola, Alan A.
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2022, 74 (02): : 428 - 456
  • [26] Lecture notes on orthogonal polynomials of several variables
    Xu, Y
    Inzell Lectures on Orthogonal Polynomials, 2005, 2 : 141 - 196
  • [27] On linearly related orthogonal polynomials in several variables
    Alfaro, Manuel
    Pena, Ana
    Perez, Teresa E.
    Luisa Rezola, M.
    NUMERICAL ALGORITHMS, 2014, 66 (03) : 525 - 553
  • [28] NOTE ON ORTHOGONAL POLYNOMIALS IN UPSILON-VARIABLES
    BERTRAN, M
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1975, 6 (02) : 250 - 257
  • [29] Orthogonal Laurent Polynomials of Two Real Variables
    Cruz-Barroso, Ruyman
    Fernandez, Lidia
    STUDIES IN APPLIED MATHEMATICS, 2025, 154 (01)
  • [30] On Koornwinder classical orthogonal polynomials in two variables
    Fernandez, Lidia
    Perez, Teresa E.
    Pinar, Miguel A.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2012, 236 (15) : 3817 - 3826